0

0

谷歌新方法ASPIRE:赋予LLM自我评分能力,有效解决「幻觉」问题,超越10倍体积模型

WBOY

WBOY

发布时间:2024-01-23 17:21:13

|

977人浏览过

|

来源于51CTO.COM

转载

大模型的「幻觉」问题马上要有解了?

威斯康星麦迪逊大学和谷歌的研究人员最近推出ASPIRE系统,使大模型能够自评输出。

如果用户看到模型的生成的结果评分不高,就能意识到这个回复可能是幻觉。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

如果系统能够根据评分结果进一步筛选输出内容,例如当评分较低时,大模型可以生成类似"我无法回答此问题"的语句,这可能最大程度地改善幻觉问题。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

论文地址:https://aclanthology.org/2023.findings-emnlp.345.pdf

ASPIRE能让LLM输出答案以及答案的置信度得分。

研究人员的实验结果表明,ASPIRE在各种QA数据集(例如 CoQA 基准)上显著优于传统的选择性预测方法。

让LLM不仅要回答问题,还要评估这些答案 。

选择性预测的基准测试上,研究人员通过ASPIRE系统取得了超过10倍规模的模型的成绩。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

就像让学生在课本后面验证他们自己的答案,虽然听起来有点不靠谱,但是细细一想,每个人在做出一道题目之后,确实会对答案的满意程度会有一个评分。

这就是ASPIRE的本质,它涉及三个阶段:

(1) 针对特定任务的调优,

(2) 答案采样,

(3) 自我评估学习。

在研究人员看来,ASPIRE不仅仅是另一个框架,它代表着一个全面提升LLM可靠性,降低幻觉的美好未来。

如果LLM可以成为决策过程中值得信赖的合作伙伴。

只要通过不断优化选择性预测的能力,人类距离充分发挥大模型的潜力就又近了一步。

研究人员希望能凭借ASPIRE,开启下一代LLM的进化,从而能创建更可靠和更具有自我意识的人工智能。

ASPIRE 的机制

针对特定任务的微调

ASPIRE执行特定于任务的微调以训练适应性参数消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型,同时冻结LLM。

给定生成任务的训练数据集,它会微调预训练的LLM以提高其预测性能。

为此,可以采用参数高效的微调技术(例如,软提示词微调和LoRA)来微调任务上的预训练LLM,因为它们可以有效地通过少量目标获得强泛化任务数据。

具体来说,LLM参数(θ)被冻结,并添加自适应参数消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型进行微调。

仅更新 θ (p) 以最小化标准 LLM 训练损失(例如交叉熵)。

这种微调可以提高选择性预测性能,因为它不仅提高了预测精度,而且还提高了正确输出序列的可能性。

答案采样

在针对特定任务进行调优后,ASPIRE使用LLM和学习到的消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型为每个训练问题生成不同的答案,并创建用于自评估学习的数据集。

研究人员的目标是生成具有高可能性的输出序列。他们使用波束搜索(Beam Search)作为解码算法来生成高似然输出序列,并使用Rouge-L度量来确定生成的输出序列是否正确。

自评估学习

在对每个查询的高似然输出进行采样后,ASPIRE添加自适应参数消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型,并且仅微调消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型来学习自评估。

由于输出序列的生成仅取决于 θ 和消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型,因此冻结 θ 和学习到的消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型可以避免在学习自评估时改变LLM的预测行为-评估。

研究人员优化了消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型,使得改编后的LLM可以自己区分正确和错误的答案。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

在这个框架中,可以使用任何参数有效的微调方法来训练消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

在这项工作中,研究人员使用软提示微调,这是一种简单而有效的机制,用于学习「软提示」来调节冻结的语言模型,从而比传统的离散文本提示更有效地执行特定的下游任务。

这种方法背后的核心在于认识到,如果能够开发出有效激发自我评价的提示,那么应该可以通过结合有针对性的训练目标的软提示微调来发现这些提示。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

在训练消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型后,研究人员通过波束搜索解码获得查询的预测(beam search decoding)。

然后,研究人员定义一个选择分数,将生成答案的可能性与学习到的自我评估分数(即,预测对于查询正确的可能性)结合起来,以做出选择性预测。

结果

Type Studio
Type Studio

一个视频编辑器,提供自动转录、自动生成字幕、视频翻译等功能

下载

为了证明ASPIRE的效果,研究人员使用各种开放式预训练Transformer (OPT)模型在三个问答数据集(CoQA、TriviaQA和SQuAD)上对其进行评估。

通过使用软提示调整训练消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型研究人员观察到LLM的准确性大幅提高。

例如,与使用CoQA和SQuAD数据集的较大预训练OPT-30B模型相比,采用ASPIRE的OPT-2.7B模型表现出更好的性能。

这些结果表明,通过适当的调整,较小的LLM在某些情况下可能有能力匹配或可能超过较大模型的准确性。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

当深入研究固定模型预测的选择分数计算时,ASPIRE获得了比所有数据集的基线方法更高的AUROC分数(随机选择的正确输出序列比随机选择的不正确输出序列具有更高选择分数的概率)。

例如,在CoQA基准上,与基线相比,ASPIRE将AUROC从51.3%提高到80.3%。

TriviaQA数据集评估中出现了一个有趣的模式。

虽然预训练的OPT-30B模型表现出更高的基线精度,但当应用传统的自我评估方法(Self-eval和P(True))时,其选择性预测的性能并没有显著提高。

相比之下,小得多的OPT-2.7B模型在使用ASPIRE进行增强后,在这方面表现优于其他模型。

这种差异体现了一个重要的问题:利用传统自我评估技术的较大LLM在选择性预测方面可能不如较小的ASPIRE增强模型有效。

消灭「幻觉」!谷歌全新ASPIRE方法让LLM给自己打分,效果碾压10x体量模型

研究人员与ASPIRE的实验之旅强调了LLM格局的关键转变:语言模型的容量并不是其性能的全部和最终目的。

相反,可以通过策略调整来大幅提高模型的有效性,即使在较小的模型中也可以进行更精确、更自信的预测。

因此,ASPIRE证明了LLM的潜力,它可以明智地确定自己答案的确定性,并在选择性预测任务中显著地超越地超越其他10倍体量的模型。

相关文章

谷歌浏览器
谷歌浏览器

谷歌浏览器Google Chrome是一款可让您更快速、轻松且安全地使用网络的浏览器。Google Chrome的设计超级简洁,使用起来得心应手。这里提供了谷歌浏览器纯净安装包,有需要的小伙伴快来保存下载体验吧!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

402

2023.08.14

人工智能在生活中的应用
人工智能在生活中的应用

人工智能在生活中的应用有语音助手、无人驾驶、金融服务、医疗诊断、智能家居、智能推荐、自然语言处理和游戏设计等。本专题为大家提供人工智能相关的文章、下载、课程内容,供大家免费下载体验。

410

2023.08.17

人工智能的基本概念是什么
人工智能的基本概念是什么

人工智能的英文缩写为AI,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学;该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

301

2024.01.09

人工智能不能取代人类的原因是什么
人工智能不能取代人类的原因是什么

人工智能不能取代人类的原因包括情感与意识、创造力与想象力、伦理与道德、社会交往与沟通能力、灵活性与适应性、持续学习和自我提升等。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

628

2024.09.10

Python 人工智能
Python 人工智能

本专题聚焦 Python 在人工智能与机器学习领域的核心应用,系统讲解数据预处理、特征工程、监督与无监督学习、模型训练与评估、超参数调优等关键知识。通过实战案例(如房价预测、图像分类、文本情感分析),帮助学习者全面掌握 Python 机器学习模型的构建与实战能力。

33

2025.10.21

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1976

2024.08.16

C++ 单元测试与代码质量保障
C++ 单元测试与代码质量保障

本专题系统讲解 C++ 在单元测试与代码质量保障方面的实战方法,包括测试驱动开发理念、Google Test/Google Mock 的使用、测试用例设计、边界条件验证、持续集成中的自动化测试流程,以及常见代码质量问题的发现与修复。通过工程化示例,帮助开发者建立 可测试、可维护、高质量的 C++ 项目体系。

6

2026.01.16

java数据库连接教程大全
java数据库连接教程大全

本专题整合了java数据库连接相关教程,阅读专题下面的文章了解更多详细内容。

28

2026.01.15

Java音频处理教程汇总
Java音频处理教程汇总

本专题整合了java音频处理教程大全,阅读专题下面的文章了解更多详细内容。

12

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.6万人学习

PostgreSQL 教程
PostgreSQL 教程

共48课时 | 7.2万人学习

Git 教程
Git 教程

共21课时 | 2.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号