五种常见的机器学习推荐算法

WBOY
发布: 2024-01-23 17:57:05
转载
4459人浏览过

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

常见的5种机器学习推荐算法

个性化是当前的趋势,无论是电商、虚拟助手还是小视频,推荐算法通过人工智能(AI)向用户展示个性化产品和服务。

现行的推荐算法主要基于从社交媒体、网站、电子商务门户、应用程序和其他渠道中收集用户数据,并利用这些数据训练具备机器学习能力的人工智能(AI)。

接下来,带来5种常见的机器学习推荐算法:

1、协同过滤

协同过滤(CF)是一种古老且经典的推荐技术,用于将具有相似兴趣的用户与个性化物品、人物或信息流进行匹配。简而言之,协同过滤可以通过“购买此商品的客户也购买了”类型的推荐,帮助用户发现其他类似产品。它的工作原理是根据用户的购买行为,推断出他们对某类产品的偏好,并向他们推荐更多相似的产品。通过分析今天购买类似产品的用户,我们可以预测他们未来更可能购买的产品。这种方法在个性化推荐系统中得到了广泛应用,为用户提供了更好的购物体验。

2、基于内容的过滤

第二个推荐算法是基于内容的过滤,它利用购买的商品作为输入数据来推荐相似的商品。这种推荐方法适用于每个特定用户,并且可以应用于庞大的用户群。

此类推荐通常在电子商务门户网站、小视频和数字图书馆的等产品中能够发现。

3、个性化视频排名

Personalized Video Ranker (PVR) 算法源于对OTT(Over-the-top)服务确定用户偏好的迫切需求。

今天学点啥
今天学点啥

秘塔AI推出的AI学习助手

今天学点啥 258
查看详情 今天学点啥

以Netflix为例,数字内容生产和需求的繁荣促使其开发了独特且有效的推荐系统。

监督和无监督机器学习算法使Netflix能够在个性化和非个性化内容推荐之间取得适当的平衡。

PVR算法以个性化的方式为每个用户从整个数据库目录中获取最佳匹配,它将个性化过滤与排名最高的网络系列相结合。

4、深度神经网络

通过深度神经网络来分析每个用户的历史记录,包括点赞、评论和最常消费的数字内容等。以精确和相关性预测未来用户偏好。再加上排名算法,为每个内容提取更丰富的特征来对推荐并进行排名。

5、基于知识的推荐系统

基于知识由丰富多样、高速变化的数据集支持。通过解码数据意图、上下文来捕获后端中数字存储的知识,以匹配特定的用户查询。

这种带有机器学习能力的推荐系统可以大大增加其在垂直领域的知识量。而这种基于知识的推荐算法的独特之处在于它可以不断改进。

以上就是五种常见的机器学习推荐算法的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:网易伏羲网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号