0

0

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

WBOY

WBOY

发布时间:2024-04-03 17:40:09

|

1764人浏览过

|

来源于51CTO.COM

转载

组查询注意力(grouped query attention)是大型语言模型中的一种多查询注意力力方法,它的目标是在保持 mqa 速度的同时实现 mha 的质量。grouped query attention 将查询分组,每个组内的查询共享相同的注意力权重,这有助于降低计算复杂度和提高推理速度。

这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。

GQA是在论文 GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints paper.中提出,这是一个相当简单和干净的想法,并且建立在多头注意力之上。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

GQA

标准多头注意层(MHA)由H个查询头、键头和值头组成。每个头都有D个维度。Pytorch的代码如下:

from torch.nn.functional import scaled_dot_product_attention  # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 8, 64) value = torch.randn(1, 256, 8, 64)  output = scaled_dot_product_attention(query, key, value) print(output.shape) # torch.Size([1, 256, 8, 64])

对于每个查询头,都有一个对应的键。这个过程如下图所示:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

而GQA将查询头分成G组,每组共享一个键和值。可以表示为:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

使用可视化的表达就能非常清楚地了解GQA的工作原理,就像我们上面说的那样。GQA是一个相当简单和干净的想法。

Pytorch代码实现

让我们编写代码将这种将查询头划分为G组,每个组共享一个键和值。我们可以使用einops库有效地执行对张量的复杂操作。

首先,定义查询、键和值。然后设置注意力头的数量,数量是随意的,但是要保证num_heads_for_query % num_heads_for_key = 0,也就是说要能够整除。我们的定义如下:

import torch  # shapes: (batch_size, seq_len, num_heads, head_dim) query = torch.randn(1, 256, 8, 64) key = torch.randn(1, 256, 2, 64) value = torch.randn(1, 256, 2, 64)  num_head_groups = query.shape[2] // key.shape[2] print(num_head_groups) # each group is of size 4 since there are 2 kv_heads

为了提高效率,交换seq_len和num_heads维度,einops可以像下面这样简单地完成:

from einops import rearrange  query = rearrange(query, "b n h d -> b h n d") key = rearrange(key, "b s h d -> b h s d") value = rearrange(value, "b s h d -> b h s d")

然后就是需要在查询矩阵中引入”分组“的概念。

from einops import rearrange query = rearrange(query, "b (h g) n d -> b g h n d", g=num_head_groups) print(query.shape) # torch.Size([1, 4, 2, 256, 64])

上面的代码我们将二维重塑为二维:对于我们定义的张量,原始维度8(查询的头数)现在被分成两组(以匹配键和值中的头数),每组大小为4。

最后最难的部分是计算注意力的分数。但其实它可以在一行中通过insum操作完成的

from einops import einsum, rearrange # g stands for the number of groups # h stands for the hidden dim # n and s are equal and stands for sequence length scores = einsum(query, key, "b g h n d, b h s d -> b h n s") print(scores.shape) # torch.Size([1, 2, 256, 256])

scores张量和上面的value张量的形状是一样的。我们看看到底是怎么操作的

einsum帮我们做了两件事:

谱乐AI
谱乐AI

谱乐AI,集成 Suno、Udio 等顶尖AI音乐模型的一站式AI音乐生成平台。

下载

1、一个查询和键的矩阵乘法。在我们的例子中,这些张量的形状是(1,4,2,256,64)和(1,2,256,64),所以沿着最后两个维度的矩阵乘法得到(1,4,2,256,256)。

2、对第二个维度(维度g)上的元素求和——如果在指定的输出形状中省略了维度,einsum将自动完成这项工作,这样的求和是用来匹配键和值中的头的数量。

最后是注意分数与值的标准乘法:

import torch.nn.functional as F  scale = query.size(-1) ** 0.5 attention = F.softmax(similarity / scale, dim=-1)  # here we do just a standard matrix multiplication out = einsum(attention, value, "b h n s, b h s d -> b h n d")  # finally, just reshape back to the (batch_size, seq_len, num_kv_heads, hidden_dim) out = rearrange(out, "b h n d -> b n h d") print(out.shape) # torch.Size([1, 256, 2, 64])

这样最简单的GQA实现就完成了,只需要不到16行python代码:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

最后再简单提一句MQA:多查询注意(MQA)是另一种简化MHA的流行方法。所有查询将共享相同的键和值。原理图如下:

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

可以看到,MQA和MHA都可以从GQA推导出来。具有单个键和值的GQA相当于MQA,而具有与头数量相等的组的GQA相当于MHA。

GQA的好处是什么?

GQA是最佳性能(MQA)和最佳模型质量(MHA)之间的一个很好的权衡。

下图显示,使用GQA,可以获得与MHA几乎相同的模型质量,同时将处理时间提高3倍,达到MQA的性能。这对于高负载系统来说可能是必不可少的。

大模型中常用的注意力机制GQA详解以及Pytorch代码实现

pytorch中没有GQA的官方实现。所以我找到了一个比较好的非官方实现,有兴趣的可以试试:

https://www.php.cn/link/5b52e27a9d5bf294f5b593c4c071500e

GQA论文:

https://www.php.cn/link/e4ba31fba036a999321d5460f7f2d1d1

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

751

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

706

2023.08.11

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

36

2026.01.14

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Go 教程
Go 教程

共32课时 | 3.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号