一文搞懂Tokenization!

PHPz
发布: 2024-04-12 14:31:26
转载
1065人浏览过

语言模型是对文本进行推理的,文本通常是字符串形式,但模型的输入只能是数字,因此需要将文本转换成数字形式。

Tokenization是自然语言处理的基本任务,根据特定需求能够把一段连续的文本序列(如句子、段落等)切分为一个字符序列(如单词、短语、字符、标点等多个单元),其中的单元称为token或词语。

根据下图所示的具体流程,首先将文本句子切分成一个个单元,然后将单元素数值化(映射为向量),再将这些向量输入到模型进行编码,最后输出到下游任务进一步得到最终的结果。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

一文搞懂Tokenization!

文本切分

按照文本切分的粒度可以将Tokenization分为词粒度Tokenization、字符粒度Tokenization、subword粒度Tokenization三类。

1.词粒度Tokenization

词粒度Tokenization是最直观的分词方式,即是指将文本按照词汇words进行切分。例如:

The quick brown fox jumps over the lazy dog.词粒度Tokenized结果:['The', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog', '.']
登录后复制

在这个例子中,文本被切分为一个个独立的单词,每个单词作为一个token,标点符号'.'也被视为独立的token。

中文文本通常会根据照搬词典收录的标准词汇汇编或者是通过分词算法识别出的短语、成语、专有名词等进行切分。

我喜欢吃苹果。词粒度Tokenized结果:['我', '喜欢', '吃', '苹果', '。']
登录后复制

这段中文文本被切分成五个词语:“我”、“喜欢”、“吃”、“苹果”和句号“。”,每个词语作为一个token。

2.字符粒度Tokenization

字符粒度Tokenization将文本分割成最小的字符单元,即每个字符被视为一个单独的token。例如:

Hello, world!字符粒度Tokenized结果:['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd', '!']
登录后复制

字符粒度Tokenization在中文中是将文本按照每个独立的汉字进行切分。

我喜欢吃苹果。字符粒度Tokenized结果:['我', '喜', '欢', '吃', '苹', '果', '。']
登录后复制

3.subword粒度Tokenization

subword粒度Tokenization介于词粒度和字符粒度之间,它将文本分割成介于单词和字符之间的子词(subwords)作为token。常见的subword Tokenization方法包括Byte Pair Encoding (BPE)、WordPiece等。这些方法通过统计文本数据中的子串频率,自动生成一种分词词典,能够有效应对未登录词(OOV)问题,同时保持一定的语义完整性。

helloworld
登录后复制

假设经过BPE算法训练后,生成的子词词典包含以下条目:

华文笔杆
华文笔杆

写材料用华文,华文笔杆帮你搞定公文写作

华文笔杆 491
查看详情 华文笔杆
h, e, l, o, w, r, d, hel, low, wor, orld
登录后复制

子词粒度Tokenized结果:

['hel', 'low', 'orld']
登录后复制

这里,“helloworld”被切分为三个子词“hel”,“low”,“orld”,这些都是词典中出现过的高频子串组合。这种切分方式既能处理未知词汇(如“helloworld”并非标准英语单词),又保留了一定的语义信息(子词组合起来能还原原始单词)。

在中文中,subword粒度Tokenization同样是将文本分割成介于汉字和词语之间的子词作为token。例如:

我喜欢吃苹果
登录后复制

假设经过BPE算法训练后,生成的子词词典包含以下条目:

我, 喜, 欢, 吃, 苹, 果, 我喜欢, 吃苹果
登录后复制

子词粒度Tokenized结果:

['我', '喜欢', '吃', '苹果']
登录后复制

在这个例子中,“我喜欢吃苹果”被切分为四个子词“我”、“喜欢”、“吃”和“苹果”,这些子词均在词典中出现。虽然没有像英文子词那样将汉字进一步组合,但子词Tokenization方法在生成词典时已经考虑了高频词汇组合,如“我喜欢”和“吃苹果”。这种切分方式在处理未知词汇的同时,也保持了词语级别的语义信息。

索引化

假设已有创建好的语料库或词汇表如下。

vocabulary = {'我': 0,'喜欢': 1,'吃': 2,'苹果': 3,'。': 4}
登录后复制

则可以查找序列中每个token在词汇表中的索引。

indexed_tokens = [vocabulary[token] for token in token_sequence]print(indexed_tokens)
登录后复制

输出:[0, 1, 2, 3, 4]。

以上就是一文搞懂Tokenization!的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:51CTO.COM网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号