0

0

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

PHPz

PHPz

发布时间:2024-05-28 08:22:01

|

966人浏览过

|

来源于机器之心

转载

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了
AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com

本文介绍了香港科技大学(广州)的一篇关于大模型高效微调(LLM PEFT Fine-tuning)的文章「Parameter-Efficient Fine-Tuning with Discrete Fourier Transform」,本文被 ICML 2024 接收,代码已开源。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

icml 2024 | 脱离lora架构,训练参数大幅减少,新型傅立叶微调来了

  • 论文地址:https://arxiv.org/abs/2405.03003
  • 项目地址:https://github.com/Chaos96/fourierft

背景

大型基座模型在自然语言处理(NLP)和计算机视觉(CV)领域都获得了瞩目的成就。微调(Finetuning)大型基座模型,使其更加适应特殊的下游任务,成为了一项热门研究课题。然而,在模型越来越大,下游任务越来越多样的今天,微调整个模型带来的计算、存储消耗已大到不再能被接受。LoRA 采用低秩拟合微调增量的方案,成功降低了大量的此类消耗,但每个适应器(adapter)的大小仍然是不可忽视的。这激发了本文的核心问题:相比 LoRA,如何进一步大幅减少可训练参数?此外,一个有趣的附加问题是能否采用更少的参数量得到高秩增量矩阵

方法

傅立叶基底在各类数据压缩应用中广泛使用,例如一维向量信号和二维图像的压缩。在这些应用中,稠密的空域信号通过傅立叶变换被转化为稀疏的频域信号。基于这一原理,作者推测模型权重的增量也可以被视为一种空域信号,其对应的频域信号可以通过稀疏表示来实现。

在这一假设的基础上,作者提出了一种新的方法,用于在频域中学习增量权重信号。具体来说,该方法通过随机位置的稀疏频域信号来表示空域权重增量。在加载预训练模型时,首先随机选择 n 个点作为有效的频域信号,然后将这些信号拼接成一个一维向量。在前向传播过程中,这个一维向量被用来通过傅立叶变换恢复空域矩阵;在反向传播过程中,由于傅里叶变换的可导性,可以直接对此可学习的向量进行更新。这种方法不仅有效减少了模型微调时所需的参数数量,同时保证了微调性能。通过这种方式,作者不仅实现了对大规模基础模型的高效微调,还展示了傅立叶变换在机器学习领域中的潜在应用价值。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

得益于傅立叶变换基底的高信息量,仅需很小的 n 值即可达到与 LoRA 相当甚至超过 LoRA 的表现。一般来说,傅立叶微调的可训练参数仅为 LoRA 的千分之一到十分之一。

实验

1. 自然语言理解

作者在自然语言理解的 GLUE 基准测试上对傅立叶微调方法进行了评估。基线对比方法包括全量微调(FF,Full Finetuning)、Bitfit、适应器微调(Adapter Tuning)、LoRA、DyLoRA 和 AdaLoRA。下表展示了各种方法在 GLUE 各个任务上的表现及其所需的训练参数量。结果表明,傅立叶微调以最少的参数量达到了甚至超越了其他微调方法的性能。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

2. 自然语言指令微调

大模型的自然语言生成是目前模型微调的重要应用领域。作者在 LLaMA 系列模型、MT-Bench 任务和 Vicuna 任务上评估了傅立叶微调的性能。结果显示,傅立叶微调以极低的训练参数量达到了与 LoRA 相似的效果,进一步验证了傅里叶微调方法的通用性和有效性。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

3. 图像分类

作者在 Vision Transformer 上测试了傅里叶微调的性能,涵盖了 8 个常见的图像分类数据集。实验结果表明,虽然在图像分类任务中傅立叶微调相较LoRA的压缩率提升并不比自然语言任务中显著,但其仍然以远小于 LoRA 的参数量超越了 LoRA 的效果。这进一步展示了傅立叶微调在不同应用领域中的有效性和优势。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

Supercreator
Supercreator

AI视频创作编辑器,几分钟内从构思到创作。

下载
4. 突破低秩

在 GLUE 基准的 RTE 数据集上,FourierFT 可以实现明显高于 LoRA (通常为 4 或 8) 的增量的秩。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

5.GPU 资源消耗

微调过程中,FourierFT 可以实现比 LoRA 更少的 GPU 消耗。下图为采用单张 4090 显卡在 RoBERTa-Large 模型上的巅峰内存消耗。

ICML 2024 | 脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了

结论

作者介绍了一种名为傅立叶微调的高效微调方法,通过利用傅里叶变换来减少大基础模型微调时的可训练参数数量。该方法通过学习少量的傅里叶谱系数来表示权重变化,显著降低了存储和计算需求。实验结果显示,傅立叶微调在自然语言理解、自然语言生成、指令调优和图像分类等任务上表现优异,与现有的低秩适应方法(如 LoRA)相比,傅立叶微调在保持或超过 LoRA 性能的同时,所需的可训练参数大幅减少。

相关专题

更多
github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

157

2026.01.21

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

2026

2024.08.16

Golang 性能分析与pprof调优实战
Golang 性能分析与pprof调优实战

本专题系统讲解 Golang 应用的性能分析与调优方法,重点覆盖 pprof 的使用方式,包括 CPU、内存、阻塞与 goroutine 分析,火焰图解读,常见性能瓶颈定位思路,以及在真实项目中进行针对性优化的实践技巧。通过案例讲解,帮助开发者掌握 用数据驱动的方式持续提升 Go 程序性能与稳定性。

9

2026.01.22

html编辑相关教程合集
html编辑相关教程合集

本专题整合了html编辑相关教程合集,阅读专题下面的文章了解更多详细内容。

56

2026.01.21

三角洲入口地址合集
三角洲入口地址合集

本专题整合了三角洲入口地址合集,阅读专题下面的文章了解更多详细内容。

50

2026.01.21

AO3中文版入口地址大全
AO3中文版入口地址大全

本专题整合了AO3中文版入口地址大全,阅读专题下面的的文章了解更多详细内容。

396

2026.01.21

妖精漫画入口地址合集
妖精漫画入口地址合集

本专题整合了妖精漫画入口地址合集,阅读专题下面的文章了解更多详细内容。

118

2026.01.21

java版本选择建议
java版本选择建议

本专题整合了java版本相关合集,阅读专题下面的文章了解更多详细内容。

3

2026.01.21

Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

16

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 14.1万人学习

Node.js 教程
Node.js 教程

共57课时 | 9.2万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号