collections模块基本介绍
我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型:
1.namedtuple(): 生成可以使用名字来访问元素内容的tuple子类
2.deque: 双端队列,可以快速的从另外一侧追加和推出对象
3.Counter: 计数器,主要用来计数
4.OrderedDict: 有序字典
5.defaultdict: 带有默认值的字典
namedtuple()
namedtuple主要用来产生可以使用名称来访问元素的数据对象,通常用来增强代码的可读性, 在访问一些tuple类型的数据时尤其好用。
举个栗子
代码如下:
# -*- coding: utf-8 -*-
"""
比如我们用户拥有一个这样的数据结构,每一个对象是拥有三个元素的tuple。
使用namedtuple方法就可以方便的通过tuple来生成可读性更高也更好用的数据结构。
"""
from collections import namedtuple
websites = [
('Sohu', 'http://www.google.com/', u'张朝阳'),
('Sina', 'http://www.sina.com.cn/', u'王志东'),
('163', 'http://www.163.com/', u'丁磊')
]
Website = namedtuple('Website', ['name', 'url', 'founder'])
for website in websites:
website = Website._make(website)
print website
# Result:
Website(name='Sohu', url='http://www.google.com/', founder=u'\u5f20\u671d\u9633')
Website(name='Sina', url='http://www.sina.com.cn/', founder=u'\u738b\u5fd7\u4e1c')
Website(name='163', url='http://www.163.com/', founder=u'\u4e01\u78ca')
deque
deque其实是 double-ended queue 的缩写,翻译过来就是双端队列,它最大的好处就是实现了从队列 头部快速增加和取出对象: .popleft(), .appendleft() 。
你可能会说,原生的list也可以从头部添加和取出对象啊?就像这样:
代码如下:
l.insert(0, v)
l.pop(0)
作为一个双端队列,deque还提供了一些其他的好用方法,比如 rotate 等。
举个栗子
代码如下:
# -*- coding: utf-8 -*-
"""
下面这个是一个有趣的例子,主要使用了deque的rotate方法来实现了一个无限循环
的加载动画
"""
import sys
import time
from collections import deque
fancy_loading = deque('>--------------------')
while True:
print '\r%s' % ''.join(fancy_loading),
fancy_loading.rotate(1)
sys.stdout.flush()
time.sleep(0.08)
# Result:
# 一个无尽循环的跑马灯
------------->-------
Counter
计数器是一个非常常用的功能需求,collections也贴心的为你提供了这个功能。
本文档主要讲述的是SCA介绍及应用实例;SCA(Service Component Architecture)是针对SOA提出的一套服务体系构建框架协议,内部既融合了IOC的思想,同时又把面向对象的复用由代码复用上升到了业务模块组件复用,同时将服务接口,实现,部署,调用完全分离,通过配置的形式灵活的组装,绑定。希望本文档会给有需要的朋友带来帮助;感兴趣的朋友可以过来看看
0
举个栗子
代码如下:
# -*- coding: utf-8 -*-
"""
下面这个例子就是使用Counter模块统计一段句子里面所有字符出现次数
"""
from collections import Counter
s = '''A Counter is a dict subclass for counting hashable objects. It is an unordered collection where elements are stored as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value including zero or negative counts. The Counter class is similar to bags or multisets in other languages.'''.lower()
c = Counter(s)
# 获取出现频率最高的5个字符
print c.most_common(5)
# Result:
[(' ', 54), ('e', 32), ('s', 25), ('a', 24), ('t', 24)]
OrderedDict
在Python中,dict这个数据结构由于hash的特性,是无序的,这在有的时候会给我们带来一些麻烦, 幸运的是,collections模块为我们提供了OrderedDict,当你要获得一个有序的字典对象时,用它就对了。
举个栗子
代码如下:
# -*- coding: utf-8 -*-
from collections import OrderedDict
items = (
('A', 1),
('B', 2),
('C', 3)
)
regular_dict = dict(items)
ordered_dict = OrderedDict(items)
print 'Regular Dict:'
for k, v in regular_dict.items():
print k, v
print 'Ordered Dict:'
for k, v in ordered_dict.items():
print k, v
# Result:
Regular Dict:
A 1
C 3
B 2
Ordered Dict:
A 1
B 2
C 3
defaultdict
我们都知道,在使用Python原生的数据结构dict的时候,如果用 d[key] 这样的方式访问, 当指定的key不存在时,是会抛出KeyError异常的。
但是,如果使用defaultdict,只要你传入一个默认的工厂方法,那么请求一个不存在的key时, 便会调用这个工厂方法使用其结果来作为这个key的默认值。
代码如下:
# -*- coding: utf-8 -*-
from collections import defaultdict
members = [
# Age, name
['male', 'John'],
['male', 'Jack'],
['female', 'Lily'],
['male', 'Pony'],
['female', 'Lucy'],
]
result = defaultdict(list)
for sex, name in members:
result[sex].append(name)
print result
# Result:
defaultdict(
参考资料
上面只是非常简单的介绍了一下collections模块的主要内容,主要目的就是当你碰到适合使用 它们的场所时,能够记起并使用它们,起到事半功倍的效果。
如果要对它们有一个更全面和深入了解的话,还是建议阅读官方文档和模块源码。
https://docs.python.org/2/library/collections.html#module-collections
python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
C++高性能并发应用_C++如何开发性能关键应用
Java AI集成Deep Java Library_Java怎么集成AI模型部署
Golang后端API开发_Golang如何高效开发后端和API
Python异步并发改进_Python异步编程有哪些新改进
C++系统编程内存管理_C++系统编程怎么与Rust竞争内存安全
Java GraalVM原生镜像构建_Java怎么用GraalVM构建高效原生镜像
Python FastAPI异步API开发_Python怎么用FastAPI构建异步API
C++现代C++20/23/26特性_现代C++有哪些新标准特性如modules和coroutines
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号