0

0

基于设计原则的重构:数据采集爬虫系统示例

WBOY

WBOY

发布时间:2024-07-20 09:07:01

|

391人浏览过

|

来源于dev.to

转载

基于设计原则的重构:数据采集爬虫系统示例

介绍

提高代码质量始终是软件开发中的一个重要问题。在本文中,我们以数据收集爬虫系统为例,具体讲解如何通过逐步重构来应用设计原则和最佳实践。

改进前的代码

首先,我们从一个非常简单的网络抓取工具开始,所有功能都集成到一个类中。

由 deepl.com 翻译(免费版)

project_root/
├── web_scraper.py
├── main.py
└── requirements.txt

web_scraper.py

import requests
import json
import sqlite3

class webscraper:
    def __init__(self, url):
        self.url = url

    def fetch_data(self):
        response = requests.get(self.url)
        data = response.text
        parsed_data = self.parse_data(data)
        enriched_data = self.enrich_data(parsed_data)
        self.save_data(enriched_data)
        return enriched_data

    def parse_data(self, data):
        return json.loads(data)

    def enrich_data(self, data):
        # apply business logic here
        # example: extract only data containing specific keywords
        return {k: v for k, v in data.items() if 'important' in v.lower()}

    def save_data(self, data):
        conn = sqlite3.connect('test.db')
        cursor = conn.cursor()
        cursor.execute('insert into data (json_data) values (?)', (json.dumps(data),))
        conn.commit()
        conn.close()

main.py

from web_scraper import webscraper

def main():
    scraper = webscraper('https://example.com/api/data')
    data = scraper.fetch_data()
    print(data)

if __name__ == "__main__":
    main()

需要改进的地方

  1. 违反了单一职责原则:一个类负责所有数据采集、分析、丰富和存储
  2. 业务逻辑不清晰:业务逻辑嵌入在enrich_data方法中,但与其他处理混合在一起
  3. 缺乏可重用性:功能紧密耦合,导致单独重用困难
  4. 测试难点:难以独立测试各个功能
  5. 配置刚性:数据库路径和其他设置直接嵌入代码中

重构阶段

1、职责分离:数据采集、分析、存储分离

  • 重大变化:将数据采集、分析和存储的职责分离到不同的类中
  • 目标:应用单一责任原则,引入环境变量

目录结构

project_root/
├── data_fetcher.py
├── data_parser.py
├── data_saver.py
├── data_enricher.py
├── web_scraper.py
├── main.py
└── requirements.txt

data_enricher.py

class dataenricher:
    def enrich(self, data):
        return {k: v for k, v in data.items() if 'important' in v.lower()}

web_scraper.py

from data_fetcher import datafetcher
from data_parser import dataparser
from data_enricher import dataenricher
from data_saver import datasaver

class webscraper:
    def __init__(self, url):
        self.url = url
        self.fetcher = datafetcher()
        self.parser = dataparser()
        self.enricher = dataenricher()
        self.saver = datasaver()

    def fetch_data(self):
        raw_data = self.fetcher.fetch(self.url)
        parsed_data = self.parser.parse(raw_data)
        enriched_data = self.enricher.enrich(parsed_data)
        self.saver.save(enriched_data)
        return enriched_data

此更改明确了每个类的职责并提高了可重用性和可测试性。然而,业务逻辑仍然嵌入在 dataenricher 类中。

2.接口介绍和依赖注入

  • 主要变化:引入接口并实现依赖注入。
  • 目的:增加灵活性和可扩展性,扩展环境变量,抽象业务逻辑

目录结构

project_root/
├── interfaces/
│   ├── __init__.py
│   ├── data_fetcher_interface.py
│   ├── data_parser_interface.py
│   ├── data_enricher_interface.py
│   └── data_saver_interface.py
├── implementations/
│   ├── __init__.py
│   ├── http_data_fetcher.py
│   ├── json_data_parser.py
│   ├── keyword_data_enricher.py
│   └── sqlite_data_saver.py
├── web_scraper.py
├── main.py
└── requirements.txt

接口/data_fetcher_interface.py

from abc import abc, abstractmethod

class datafetcherinterface(abc):
    @abstractmethod
    def fetch(self, url: str) -> str:
        pass

接口/data_parser_interface.py

from abc import abc, abstractmethod
from typing import dict, any

class dataparserinterface(abc):
    @abstractmethod
    def parse(self, raw_data: str) -> dict[str, any]:
        pass

接口/data_enricher_interface.py

from abc import abc, abstractmethod
from typing import dict, any

class dataenricherinterface(abc):
    @abstractmethod
    def enrich(self, data: dict[str, any]) -> dict[str, any]:
        pass

接口/data_saver_interface.py

from abc import abc, abstractmethod
from typing import dict, any

class datasaverinterface(abc):
    @abstractmethod
    def save(self, data: dict[str, any]) -> none:
        pass

实现/keyword_data_enricher.py

import os
from interfaces.data_enricher_interface import dataenricherinterface

class keyworddataenricher(dataenricherinterface):
    def __init__(self):
        self.keyword = os.getenv('important_keyword', 'important')

    def enrich(self, data):
        return {k: v for k, v in data.items() if self.keyword in str(v).lower()}

web_scraper.py

from interfaces.data_fetcher_interface import datafetcherinterface
from interfaces.data_parser_interface import dataparserinterface
from interfaces.data_enricher_interface import dataenricherinterface
from interfaces.data_saver_interface import datasaverinterface

class webscraper:
    def __init__(self, fetcher: datafetcherinterface, parser: dataparserinterface, 
                 enricher: dataenricherinterface, saver: datasaverinterface):
        self.fetcher = fetcher
        self.parser = parser
        self.enricher = enricher
        self.saver = saver

    def fetch_data(self, url):
        raw_data = self.fetcher.fetch(url)
        parsed_data = self.parser.parse(raw_data)
        enriched_data = self.enricher.enrich(parsed_data)
        self.saver.save(enriched_data)
        return enriched_data

现阶段主要变化是

  1. 引入接口以方便切换到不同的实现
  2. 依赖注入让webscraper类更加灵活
  3. fetch_data 方法已更改为以 url 作为参数,使 url 规范更加灵活。
  4. 业务逻辑被抽象为dataenricherinterface并实现为keyworddataenricher。
  5. 允许使用环境变量设置关键字,使业务逻辑更加灵活。

这些改变极大地提高了系统的灵活性和可扩展性。然而,业务逻辑仍然嵌入在 dataenricherinterface 及其实现中。下一步是进一步分离这个业务逻辑,并将其明确定义为领域层。

Word-As-Image for Semantic Typography
Word-As-Image for Semantic Typography

文字变形艺术字、文字变形象形字

下载

3.领域层的引入和业务逻辑的分离

上一步中,接口的引入增加了系统的灵活性。但是,业务逻辑(在本例中为数据重要性确定和过滤)仍然被视为数据层的一部分。基于领域驱动设计的理念,将此业务逻辑视为系统的中心概念,并将其实现为独立的领域层,可以带来以下好处

  1. 业务逻辑集中管理
  2. 通过领域模型更具表现力的代码
  3. 更改业务规则具有更大的灵活性
  4. 易于测试

更新了目录结构:

project_root/
├── domain/
│   ├── __init__.py
│   ├── scraped_data.py
│   └── data_enrichment_service.py
├── data/
│   ├── __init__.py
│   ├── interfaces/
│   │   ├── __init__.py
│   │   ├── data_fetcher_interface.py
│   │   ├── data_parser_interface.py
│   │   └── data_saver_interface.py
│   ├── implementations/
│   │   ├── __init__.py
│   │   ├── http_data_fetcher.py
│   │   ├── json_data_parser.py
│   │   └── sqlite_data_saver.py
├── application/
│   ├── __init__.py
│   └── web_scraper.py
├── main.py
└── requirements.txt

现阶段,dataenricherinterface 和 keyworddataenricher 的角色将转移到领域层的 scrapeddata 模型和 dataenrichmentservice 中。下面提供了此更改的详细信息。

变更前(第 2 部分)

class dataenricherinterface(abc):
    @abstractmethod
    def enrich(self, data: dict[str, any]) -> dict[str, any]:
        pass
class keyworddataenricher(dataenricherinterface):
    def __init__(self):
        self.keyword = os.getenv('important_keyword', 'important')

    def enrich(self, data):
        return {k: v for k, v in data.items() if self.keyword in str(v).lower()}

修改后(第3部分)

@dataclass
class scrapeddata:
    content: dict[str, any]
    source_url: str

    def is_important(self) -> bool:
        important_keyword = os.getenv('important_keyword', 'important')
        return any(important_keyword in str(v).lower() for v in self.content.values())
class dataenrichmentservice:
    def __init__(self):
        self.important_keyword = os.getenv('important_keyword', 'important')

    def enrich(self, data: scrapeddata) -> scrapeddata:
        if data.is_important():
            enriched_content = {k: v for k, v in data.content.items() if self.important_keyword in str(v).lower()}
            return scrapeddata(content=enriched_content, source_url=data.source_url)
        return data

此更改改进了以下内容。

  1. 业务逻辑已移至领域层,消除了对 dataenricherinterface 的需求。

  2. keyworddataenricher 功能已合并到 dataenrichmentservice 中,将业务逻辑集中在一处。

  3. scrapeddata 模型中添加了 is_important 方法。这使得领域模型本身负责确定数据的重要性,并使领域概念更加清晰。

  4. dataenrichmentservice 现在直接处理 scrapeddata 对象,提高类型安全性。

webscraper 类也将更新以反映此更改。

from data.interfaces.data_fetcher_interface import DataFetcherInterface
from data.interfaces.data_parser_interface import DataParserInterface
from data.interfaces.data_saver_interface import DataSaverInterface
from domain.scraped_data import ScrapedData
from domain.data_enrichment_service import DataEnrichmentService

class WebScraper:
    def __init__(self, fetcher: DataFetcherInterface, parser: DataParserInterface, 
                 saver: DataSaverInterface, enrichment_service: DataEnrichmentService):
        self.fetcher = fetcher
        self.parser = parser
        self.saver = saver
        self.enrichment_service = enrichment_service

    def fetch_data(self, url: str) -> ScrapedData:
        raw_data = self.fetcher.fetch(url)
        parsed_data = self.parser.parse(raw_data)
        scraped_data = ScrapedData(content=parsed_data, source_url=url)
        enriched_data = self.enrichment_service.enrich(scraped_data)
        self.saver.save(enriched_data)
        return enriched_data

这一改变将业务逻辑从数据层完全转移到了领域层,使系统的结构更加清晰。删除 dataenricherinterface 并引入 dataenrichmentservice 不仅仅是接口替换,而是业务逻辑处理方式的根本性改变。

概括

本文演示了如何通过数据收集爬虫系统的逐步重构过程来提高代码质量并应用设计原则。主要改进的地方如下。

  1. 职责分离:应用单一职责原则,我们将数据获取、解析、丰富和存储分离到不同的类中。
  2. 接口和依赖注入的引入:大大增加了系统的灵活性和可扩展性,更容易切换不同的实现。
  3. 引入领域模型和服务:清晰分离业务逻辑,定义系统核心概念。
  4. 采用分层架构:明确分离领域、数据和应用层,并定义各层的职责。 5.维护接口:维护数据层的抽象,以确保实现的灵活性。

这些改进极大地增强了系统的模块化、可复用性、可测试性、可维护性和可扩展性。特别是,通过应用领域驱动设计的一些概念,业务逻辑变得更加清晰,结构更加灵活,以适应未来需求的变化。同时,通过维护接口,我们确保了轻松更改和扩展数据层实现的灵活性。

需要注意的是,这个重构过程不是一次性的,而是持续改进过程的一部分。根据项目的规模和复杂程度,在适当的级别采用设计原则和 ddd 概念并进行渐进式改进非常重要。

最后,本文介绍的方法可以应用于各种软件项目,而不仅仅是数据收集爬虫。我们鼓励您在提高代码质量和设计时将它们用作参考。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
硬盘接口类型介绍
硬盘接口类型介绍

硬盘接口类型有IDE、SATA、SCSI、Fibre Channel、USB、eSATA、mSATA、PCIe等等。详细介绍:1、IDE接口是一种并行接口,主要用于连接硬盘和光驱等设备,它主要有两种类型:ATA和ATAPI,IDE接口已经逐渐被SATA接口;2、SATA接口是一种串行接口,相较于IDE接口,它具有更高的传输速度、更低的功耗和更小的体积;3、SCSI接口等等。

987

2023.10.19

PHP接口编写教程
PHP接口编写教程

本专题整合了PHP接口编写教程,阅读专题下面的文章了解更多详细内容。

44

2025.10.17

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

49

2025.12.29

数据库三范式
数据库三范式

数据库三范式是一种设计规范,用于规范化关系型数据库中的数据结构,它通过消除冗余数据、提高数据库性能和数据一致性,提供了一种有效的数据库设计方法。本专题提供数据库三范式相关的文章、下载和课程。

330

2023.06.29

如何删除数据库
如何删除数据库

删除数据库是指在MySQL中完全移除一个数据库及其所包含的所有数据和结构,作用包括:1、释放存储空间;2、确保数据的安全性;3、提高数据库的整体性能,加速查询和操作的执行速度。尽管删除数据库具有一些好处,但在执行任何删除操作之前,务必谨慎操作,并备份重要的数据。删除数据库将永久性地删除所有相关数据和结构,无法回滚。

2068

2023.08.14

vb怎么连接数据库
vb怎么连接数据库

在VB中,连接数据库通常使用ADO(ActiveX 数据对象)或 DAO(Data Access Objects)这两个技术来实现:1、引入ADO库;2、创建ADO连接对象;3、配置连接字符串;4、打开连接;5、执行SQL语句;6、处理查询结果;7、关闭连接即可。

346

2023.08.31

MySQL恢复数据库
MySQL恢复数据库

MySQL恢复数据库的方法有使用物理备份恢复、使用逻辑备份恢复、使用二进制日志恢复和使用数据库复制进行恢复等。本专题为大家提供MySQL数据库相关的文章、下载、课程内容,供大家免费下载体验。

251

2023.09.05

vb中怎么连接access数据库
vb中怎么连接access数据库

vb中连接access数据库的步骤包括引用必要的命名空间、创建连接字符串、创建连接对象、打开连接、执行SQL语句和关闭连接。本专题为大家提供连接access数据库相关的文章、下载、课程内容,供大家免费下载体验。

318

2023.10.09

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号