在上一篇文章中,我们讨论了如何使用 python 获取 nifty 和 bank nifty 数据。那篇文章的反响很好,因此根据大众的需求,这里有一个扩展版本。在本文中,我们将学习如何每 30 秒从 nse 网站获取期权链数据。此内容仅用于学习目的。
在 python 中,我们将使用 asyncio 每 30 秒向 nse 数据发出一次 api 请求。
pip 安装 aiohttp 异步
import aiohttp
import asyncio
import requests
import json
import math
import time
def strRed(skk): return "\033[91m {}\033[00m".format(skk)
def strGreen(skk): return "\033[92m {}\033[00m".format(skk)
def strYellow(skk): return "\033[93m {}\033[00m".format(skk)
def strLightPurple(skk): return "\033[94m {}\033[00m".format(skk)
def strPurple(skk): return "\033[95m {}\033[00m".format(skk)
def strCyan(skk): return "\033[96m {}\033[00m".format(skk)
def strLightGray(skk): return "\033[97m {}\033[00m".format(skk)
def strBlack(skk): return "\033[98m {}\033[00m".format(skk)
def strBold(skk): return "\033[1m {}\033[00m".format(skk)
def round_nearest(x, num=50): return int(math.ceil(float(x)/num)*num)
def nearest_strike_bnf(x): return round_nearest(x, 100)
def nearest_strike_nf(x): return round_nearest(x, 50)
url_oc = "https://www.nseindia.com/option-chain"
url_bnf = 'https://www.nseindia.com/api/option-chain-indices?symbol=BANKNIFTY'
url_nf = 'https://www.nseindia.com/api/option-chain-indices?symbol=NIFTY'
url_indices = "https://www.nseindia.com/api/allIndices"
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36',
'accept-language': 'en,gu;q=0.9,hi;q=0.8',
'accept-encoding': 'gzip, deflate, br'}
cookies = dict()
def set_cookie():
sess = requests.Session()
request = sess.get(url_oc, headers=headers, timeout=5)
return dict(request.cookies)
async def get_data(url, session):
global cookies
async with session.get(url, headers=headers, timeout=5, cookies=cookies) as response:
if response.status == 401:
cookies = set_cookie()
async with session.get(url, headers=headers, timeout=5, cookies=cookies) as response:
return await response.text()
elif response.status == 200:
return await response.text()
return ""
async def fetch_all_data():
async with aiohttp.ClientSession() as session:
indices_data = await get_data(url_indices, session)
bnf_data = await get_data(url_bnf, session)
nf_data = await get_data(url_nf, session)
return indices_data, bnf_data, nf_data
# Process the fetched data
def process_indices_data(data):
global bnf_ul, nf_ul, bnf_nearest, nf_nearest
data = json.loads(data)
for index in data["data"]:
if index["index"] == "NIFTY 50":
nf_ul = index["last"]
if index["index"] == "NIFTY BANK":
bnf_ul = index["last"]
bnf_nearest = nearest_strike_bnf(bnf_ul)
nf_nearest = nearest_strike_nf(nf_ul)
def process_oi_data(data, nearest, step, num):
data = json.loads(data)
currExpiryDate = data["records"]["expiryDates"][0]
oi_data = []
for item in data['records']['data']:
if item["expiryDate"] == currExpiryDate:
if nearest - step*num <= item["strikePrice"] <= nearest + step*num:
oi_data.append((item["strikePrice"], item["CE"]["openInterest"], item["PE"]["openInterest"]))
return oi_data
def print_oi_data(nifty_data, bank_nifty_data, prev_nifty_data, prev_bank_nifty_data):
print(strBold(strLightPurple("Nifty Open Interest:")))
for i, (strike, ce_oi, pe_oi) in enumerate(nifty_data):
ce_change = ce_oi - prev_nifty_data[i][1] if prev_nifty_data else 0
pe_change = pe_oi - prev_nifty_data[i][2] if prev_nifty_data else 0
ce_color = strGreen(ce_oi) if ce_change > 0 else strRed(ce_oi)
pe_color = strGreen(pe_oi) if pe_change > 0 else strRed(pe_oi)
print(f"Strike Price: {strike}, Call OI: {ce_color} ({strBold(f'+{ce_change}') if ce_change > 0 else strBold(ce_change) if ce_change < 0 else ce_change}), Put OI: {pe_color} ({strBold(f'+{pe_change}') if pe_change > 0 else strBold(pe_change) if pe_change < 0 else pe_change})")
print(strBold(strLightPurple("\nBank Nifty Open Interest:")))
for i, (strike, ce_oi, pe_oi) in enumerate(bank_nifty_data):
ce_change = ce_oi - prev_bank_nifty_data[i][1] if prev_bank_nifty_data else 0
pe_change = pe_oi - prev_bank_nifty_data[i][2] if prev_bank_nifty_data else 0
ce_color = strGreen(ce_oi) if ce_change > 0 else strRed(ce_oi)
pe_color = strGreen(pe_oi) if pe_change > 0 else strRed(pe_oi)
print(f"Strike Price: {strike}, Call OI: {ce_color} ({strBold(f'+{ce_change}') if ce_change > 0 else strBold(ce_change) if ce_change < 0 else ce_change}), Put OI: {pe_color} ({strBold(f'+{pe_change}') if pe_change > 0 else strBold(pe_change) if pe_change < 0 else pe_change})")
def calculate_support_resistance(oi_data):
highest_oi_ce = max(oi_data, key=lambda x: x[1])
highest_oi_pe = max(oi_data, key=lambda x: x[2])
return highest_oi_ce[0], highest_oi_pe[0]
async def update_data():
global cookies
prev_nifty_data = prev_bank_nifty_data = None
while True:
cookies = set_cookie()
indices_data, bnf_data, nf_data = await fetch_all_data()
process_indices_data(indices_data)
nifty_oi_data = process_oi_data(nf_data, nf_nearest, 50, 10)
bank_nifty_oi_data = process_oi_data(bnf_data, bnf_nearest, 100, 10)
support_nifty, resistance_nifty = calculate_support_resistance(nifty_oi_data)
support_bank_nifty, resistance_bank_nifty = calculate_support_resistance(bank_nifty_oi_data)
print(strBold(strCyan(f"\nMajor Support and Resistance Levels:")))
print(f"Nifty Support: {strYellow(support_nifty)}, Nifty Resistance: {strYellow(resistance_nifty)}")
print(f"Bank Nifty Support: {strYellow(support_bank_nifty)}, Bank Nifty Resistance: {strYellow(resistance_bank_nifty)}")
print_oi_data(nifty_oi_data, bank_nifty_oi_data, prev_nifty_data, prev_bank_nifty_data)
prev_nifty_data = nifty_oi_data
prev_bank_nifty_data = bank_nifty_oi_data
for i in range(30, 0, -1):
print(strBold(strLightGray(f"\rFetching data in {i} seconds...")), end="")
time.sleep(1)
print(strBold(strCyan("\nFetching new data... Please wait.")))
await asyncio.sleep(1)
async def main():
await update_data()
asyncio.run(main())


立即学习“Python免费学习笔记(深入)”;
您甚至可以通过此链接观看演示视频
谢谢!!
我们下一篇富有洞察力的博客见。
以上就是使用 Python 的 NSE 期权链数据 - 第二部分 |沙阿·斯塔万的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号