了解您的数据:探索性数据分析的要点”

王林
发布: 2024-08-13 10:21:05
转载
776人浏览过

了解您的数据:探索性数据分析的要点”

探索性数据分析 (EDA) 正在分析数据集,以总结其主要特征、识别模式、发现异常并通常使用统计图形和其他数据可视化方法测试假设。它有助于总结数据并从数据集中发现见解。

探索性数据分析(EDA)涉及的典型步骤。

第 1 步:从数据库、网络抓取或 API 等各种来源收集所需数据。然后将数据和所需的库导入到集成开发环境(IDE),例如jupyter笔记本。 pandas、NumPy、Matplotlib 和 Seaborn 等 Python 库用于探索和可视化数据
步骤 2:观察您的数据集并执行数据清理,例如缺失值或错误。
步骤 3:识别模式并找到数据集中的异常值。执行描述性统计来总结数据,以大致了解其内容,例如平均值、最小值和最大值。
第 4 步:利用您学到的知识来完善或产生新问题。
第 5 步:对数据进行转换和建模以寻找答案。例如根据分析需求聚合或分解数据。
第 6 步:使用单变量、双变量和多变量分析执行数据探索。
步骤 7:使用某些可视化工具(例如折线图、条形图、箱线图、散点图和热图)应用分布和关系的数据可视化。
步骤 8:假设检验 - 使用统计测试开发和评估假设,以验证数据中的假设或关系。
第 9 步:利用描述性统计数据和生成的数据可视化的关键见解总结研究结果。记录 EDA 流程和结果,并创建报告和演示文稿,以将结果传达给所有相关利益相关者。

探索性数据分析的好处

帮助理解和解释复杂的数据集。 EDA 帮助数据科学家使用一系列统计和图形技术发现模式、检测异常、测试假设和验证假设。此外,它还可以检测数据质量问题,例如重复记录,可以在进行更详细的分析之前纠正这些问题。

结论
探索性数据分析 (EDA) 能够将数据转化为可操作的见解。它可以应用于任何类型的数据——结构化、非结构化或半结构化——尽管工具和技术可能有所不同。此过程允许数据科学家和分析师从多个角度检查数据集,而无需对其内容进行任何先入为主的假设。

以上就是了解您的数据:探索性数据分析的要点”的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号