Matplotlib 颜色图标准化:可视化非线性数据

王林
发布: 2024-08-19 08:03:03
转载
1021人浏览过

介绍

matplotlib 颜色图标准化:可视化非线性数据

在数据可视化中,颜色图用于通过颜色来表示数值数据。然而,有时数据分布可能是非线性的,这使得难以辨别数据的细节。在这种情况下,颜色图标准化可用于以非线性方式将颜色图映射到数据上,以帮助更准确地可视化数据。 matplotlib 提供了多种标准化方法,包括 symlognorm 和 asinhnorm,可用于标准化颜色图。本实验将演示如何使用 symlognorm 和 asinhnorm 将颜色图映射到非线性数据。

虚拟机提示

虚拟机启动完成后,点击左上角切换到notebook选项卡,访问jupyter notebook进行练习。

有时,您可能需要等待几秒钟 jupyter notebook 才能完成加载。由于 jupyter notebook 的限制,操作验证无法自动化。

如果您在学习过程中遇到问题,请随时询问labby。会后反馈,我们会及时为您解决问题。

导入所需的库

在这一步中,我们将导入必要的库,包括 matplotlib、numpy 和 matplotlib 颜色。

畅图
畅图

AI可视化工具

畅图 58
查看详情 畅图
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.colors as colors
登录后复制

创建综合数据

在此步骤中,我们将创建一个由两个驼峰组成的合成数据集,一个负驼峰,一个正驼峰,其中正驼峰的幅度是负驼峰的八倍。然后我们将应用 symlognorm 来可视化数据。

def rbf(x, y):
    return 1.0 / (1 + 5 * ((x ** 2) + (y ** 2)))

n = 200
gain = 8
x, y = np.mgrid[-3:3:complex(0, n), -2:2:complex(0, n)]
z1 = rbf(x + 0.5, y + 0.5)
z2 = rbf(x - 0.5, y - 0.5)
z = gain * z1 - z2

shadeopts = {'cmap': 'prgn', 'shading': 'gouraud'}
colormap = 'prgn'
lnrwidth = 0.5
登录后复制

应用 symlognorm

在此步骤中,我们将 symlognorm 应用于合成数据并可视化结果。

fig, ax = plt.subplots(2, 1, sharex=true, sharey=true)

pcm = ax[0].pcolormesh(x, y, z,
                       norm=colors.symlognorm(linthresh=lnrwidth, linscale=1,
                                              vmin=-gain, vmax=gain, base=10),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[0], extend='both')
ax[0].text(-2.5, 1.5, 'symlog')

pcm = ax[1].pcolormesh(x, y, z, vmin=-gain, vmax=gain,
                       **shadeopts)
fig.colorbar(pcm, ax=ax[1], extend='both')
ax[1].text(-2.5, 1.5, 'linear')

plt.show()
登录后复制

应用asinhnorm

在此步骤中,我们将 asinhnorm 应用于合成数据并可视化结果。

fig, ax = plt.subplots(2, 1, sharex=True, sharey=True)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1,
                                              vmin=-gain, vmax=gain, base=10),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[0], extend='both')
ax[0].text(-2.5, 1.5, 'symlog')

pcm = ax[1].pcolormesh(X, Y, Z,
                       norm=colors.AsinhNorm(linear_width=lnrwidth,
                                             vmin=-gain, vmax=gain),
                       **shadeopts)
fig.colorbar(pcm, ax=ax[1], extend='both')
ax[1].text(-2.5, 1.5, 'asinh')

plt.show()
登录后复制

概括

在本实验中,我们学习了如何使用 symlognorm 和 asinhnorm 将颜色图映射到非线性数据。通过应用这些标准化方法,我们可以更准确地可视化数据并更容易地辨别数据的细节。


? 立即练习:matplotlib 颜色图标准化

想了解更多吗?

  • ? 学习最新的python技能树
  • ? 阅读更多 python 教程
  • ? 加入我们的 discord 或发推文@wearelabex

以上就是Matplotlib 颜色图标准化:可视化非线性数据的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号