总结
豆包 AI 助手文章总结

Tensorflow 音乐预测

王林
发布: 2024-08-26 09:09:22
转载
692人浏览过

tensorflow 音乐预测

在本文中,我展示了如何使用张量流来预测音乐风格。
在我的示例中,我比较了电子音乐和古典音乐。

你可以在我的github上找到代码:
https://github.com/victordalet/sound_to_partition


i - 数据集

第一步,您需要创建一个数据集文件夹,并在里面添加一个音乐风格文件夹,例如我添加一个 techno 文件夹和 classic 文件夹,其中放置我的 wav 歌曲。

ii - 火车

我创建一个训练文件,参数 max_epochs 需要完成。

修改构造函数中与数据集文件夹中您的目录对应的类。

在加载和处理方法中,我从不同的目录检索wav文件并获取频谱图。

出于训练目的,我使用 keras 卷积和模型。

import os
import sys
from typing import list

import librosa
import numpy as np
from tensorflow.keras.layers import input, conv2d, maxpooling2d, flatten, dense
from tensorflow.keras.models import model
from tensorflow.keras.optimizers import adam
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import to_categorical
from tensorflow.image import resize



class train:

    def __init__(self):
        self.x_train = none
        self.x_test = none
        self.y_train = none
        self.y_test = none
        self.data_dir: str = 'dataset'
        self.classes: list[str] = ['techno','classic']
        self.max_epochs: int = int(sys.argv[1])

    @staticmethod
    def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)):
        data = []
        labels = []

        for i, class_name in enumerate(classes):
            class_dir = os.path.join(data_dir, class_name)
            for filename in os.listdir(class_dir):
                if filename.endswith('.wav'):
                    file_path = os.path.join(class_dir, filename)
                    audio_data, sample_rate = librosa.load(file_path, sr=none)
                    mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)
                    mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape)
                    data.append(mel_spectrogram)
                    labels.append(i)

        return np.array(data), np.array(labels)

    def create_model(self):
        data, labels = self.load_and_preprocess_data(self.data_dir, self.classes)
        labels = to_categorical(labels, num_classes=len(self.classes))  # convert labels to one-hot encoding
        self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2,
                                                                                random_state=42)

        input_shape = self.x_train[0].shape
        input_layer = input(shape=input_shape)
        x = conv2d(32, (3, 3), activation='relu')(input_layer)
        x = maxpooling2d((2, 2))(x)
        x = conv2d(64, (3, 3), activation='relu')(x)
        x = maxpooling2d((2, 2))(x)
        x = flatten()(x)
        x = dense(64, activation='relu')(x)
        output_layer = dense(len(self.classes), activation='softmax')(x)
        self.model = model(input_layer, output_layer)

        self.model.compile(optimizer=adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

    def train_model(self):
        self.model.fit(self.x_train, self.y_train, epochs=self.max_epochs, batch_size=32,
                       validation_data=(self.x_test, self.y_test))
        test_accuracy = self.model.evaluate(self.x_test, self.y_test, verbose=0)
        print(test_accuracy[1])

    def save_model(self):
        self.model.save('weight.h5')


if __name__ == '__main__':
    train = train()
    train.create_model()
    train.train_model()
    train.save_model()
登录后复制

iii-测试

为了测试和使用模型,我创建了这个类来检索权重并预测音乐的风格。

不要忘记将正确的类添加到构造函数中。

from typing import List

import librosa
import numpy as np
from tensorflow.keras.models import load_model
from tensorflow.image import resize
import tensorflow as tf



class Test:

    def __init__(self, audio_file_path: str):
        self.model = load_model('weight.h5')
        self.target_shape = (128, 128)
        self.classes: List[str] = ['techno','classic']
        self.audio_file_path: str = audio_file_path

    def test_audio(self, file_path, model):
        audio_data, sample_rate = librosa.load(file_path, sr=None)
        mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate)
        mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape)
        mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + self.target_shape + (1,))

        predictions = model.predict(mel_spectrogram)

        class_probabilities = predictions[0]

        predicted_class_index = np.argmax(class_probabilities)

        return class_probabilities, predicted_class_index

    def test(self):
        class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model)

        for i, class_label in enumerate(self.classes):
            probability = class_probabilities[i]
            print(f'Class: {class_label}, Probability: {probability:.4f}')

        predicted_class = self.classes[predicted_class_index]
        accuracy = class_probabilities[predicted_class_index]
        print(f'The audio is classified as: {predicted_class}')
        print(f'Accuracy: {accuracy:.4f}')
登录后复制

以上就是Tensorflow 音乐预测的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
豆包 AI 助手文章总结
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号