机器学习模型本质上是一组用于进行预测或查找数据模式的规则或机制。简单地说(不用担心过于简单化),在 excel 中使用最小二乘法计算的趋势线也是一个模型。然而,实际应用中使用的模型并不那么简单——它们常常涉及更复杂的方程和算法,而不仅仅是简单的方程。
在这篇文章中,我将首先构建一个非常简单的机器学习模型,并将其作为一个非常简单的 Web 应用程序发布,以了解该过程。
在这里,我将只关注流程,而不是 ML 模型本身。 Alsom 我将使用 Streamlit 和 Streamlit Community Cloud 轻松发布 Python Web 应用程序。
使用 scikit-learn(一种流行的机器学习 Python 库),您可以快速训练数据并创建模型,只需几行代码即可完成简单任务。然后可以使用 joblib 将模型保存为可重用文件。这个保存的模型可以像 Web 应用程序中的常规 Python 库一样导入/加载,从而允许应用程序使用经过训练的模型进行预测!
应用网址:https://yh-machine-learning.streamlit.app/
GitHub:https://github.com/yoshan0921/yh-machine-learning.git
此应用程序允许您检查在帕尔默企鹅数据集上训练的随机森林模型所做的预测。 (有关训练数据的更多详细信息,请参阅本文末尾。)
具体来说,该模型根据各种特征来预测企鹅物种,包括物种、岛屿、喙长、鳍状肢长度、体型和性别。用户可以导航应用程序以查看不同的特征如何影响模型的预测。
预测屏幕
学习数据/可视化屏幕
用于输入特征的 Streamlit 接口:代码使用 Streamlit 创建一个交互式界面,用户可以在其中输入性别、岛屿、bill_length_mm、bill_depth_mm、flipper_length_mm 和 body_mass_g 等特征以用于预测。
数据编码和准备:用户输入被转换为 DataFrame,并对分类变量(岛屿、性别)进行 one-hot 编码。该代码通过添加模型训练期间存在的任何缺失列来确保输入数据与预期格式匹配。
种类:企鹅的种类(阿德利企鹅、帽带企鹅、巴布亚企鹅)。 ?岛屿:观察到企鹅的特定岛屿(Biscoe、Dream、Torgersen)。? ?Bill Length:企鹅的嘴的长度(毫米)。? ?Bill Depth:企鹅喙的深度(毫米)。? ?鳍状肢长度:企鹅鳍状肢的长度(毫米)。? ?体重:企鹅的质量(克)。? ?性别:企鹅的性别(雄性或雌性)。? ? ?该数据集源自 Kaggle,可以在此处访问。特征的多样性使其成为构建分类模型和了解每个特征在物种预测中的重要性的绝佳选择。? ? ?
以上就是使用 Streamlit 将机器学习模型部署为 Web 应用程序的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号