0

0

为什么现实世界的机器学习需要分布式计算

王林

王林

发布时间:2024-09-09 20:20:17

|

779人浏览过

|

来源于dev.to

转载

为什么现实世界的机器学习需要分布式计算

pyspark 如何帮助您像专业人士一样处理庞大的数据集

pytorch 和 tensorflow 等机器学习框架非常适合构建模型。但现实是,当涉及到现实世界的项目时(处理巨大的数据集),您需要的不仅仅是一个好的模型。您需要一种有效处理和管理所有数据的方法。这就是像 pyspark 这样的分布式计算可以拯救世界的地方。

让我们来分析一下为什么在现实世界的机器学习中处理大数据意味着超越 pytorch 和 tensorflow,以及 pyspark 如何帮助您实现这一目标。
真正的问题:大数据
您在网上看到的大多数机器学习示例都使用小型、易于管理的数据集。您可以将整个事情放入内存中,进行尝试,并在几分钟内训练模型。但在现实场景中(例如信用卡欺诈检测、推荐系统或财务预测),您要处理数百万甚至数十亿行。突然间,您的笔记本电脑或服务器无法处理它。

如果您尝试将所有数据一次性加载到 pytorch 或 tensorflow 中,事情就会崩溃。这些框架是为模型训练而设计的,而不是为了有效处理巨大的数据集。这就是分布式计算变得至关重要的地方。
为什么 pytorch 和 tensorflow 还不够
pytorch 和 tensorflow 非常适合构建和优化模型,但在处理大规模数据任务时却表现不佳。两个主要问题:

  • 内存过载:他们在训练之前将整个数据集加载到内存中。这适用于小型数据集,但当您拥有 tb 级的数据时,游戏就结束了。
  • 无分布式数据处理:pytorch 和 tensorflow 并不是为处理分布式数据处理而构建的。如果您有大量数据分布在多台机器上,那么它们并没有真正的帮助。

这就是 pyspark 的闪光点。它旨在处理分布式数据,在多台机器上高效处理数据,同时处理大量数据集,而不会导致系统崩溃。

真实示例:使用 pyspark 检测信用卡欺诈
让我们深入研究一个例子。假设您正在开发使用信用卡交易数据的欺诈检测系统。在本例中,我们将使用 kaggle 的流行数据集。它包含超过 284,000 笔交易,其中不到 1% 是欺诈交易。

第 1 步:在 google colab 中设置 pyspark
为此,我们将使用 google colab,因为它允许我们以最少的设置运行 pyspark。

!pip install pyspark

接下来,导入必要的库并启动 spark 会话。

import os
from pyspark.sql import sparksession
from pyspark.sql.functions import col, sum, udf
from pyspark.ml.feature import vectorassembler, stringindexer, minmaxscaler
from pyspark.ml.classification import randomforestclassifier, gbtclassifier
from pyspark.ml.tuning import paramgridbuilder, crossvalidator
from pyspark.ml.evaluation import binaryclassificationevaluator, multiclassclassificationevaluator
from pyspark.ml.linalg import vectors
import numpy as np
from pyspark.sql.types import floattype

启动 pyspark 会话

spark = sparksession.builder \
    .appname("frauddetectionimproved") \
    .master("local[*]") \
    .config("spark.executorenv.pythonhashseed", "0") \
    .getorcreate()

第 2 步:加载和准备数据

data = spark.read.csv('creditcard.csv', header=true, inferschema=true)
data = data.orderby("time")  # ensure data is sorted by time
data.show(5)
data.describe().show()
# check for missing values in each column
data.select([sum(col(c).isnull().cast("int")).alias(c) for c in data.columns]).show()

# prepare the feature columns
feature_columns = data.columns
feature_columns.remove("class")  # removing "class" column as it is our label

# assemble features into a single vector
assembler = vectorassembler(inputcols=feature_columns, outputcol="features")
data = assembler.transform(data)
data.select("features", "class").show(5)

# split data into train (60%), test (20%), and unseen (20%)
train_data, temp_data = data.randomsplit([0.6, 0.4], seed=42)
test_data, unseen_data = temp_data.randomsplit([0.5, 0.5], seed=42)

# print class distribution in each dataset
print("train data:")
train_data.groupby("class").count().show()

print("test and parameter optimisation data:")
test_data.groupby("class").count().show()

print("unseen data:")
unseen_data.groupby("class").count().show()

第 3 步:初始化模型

# initialize randomforestclassifier
rf = randomforestclassifier(labelcol="class", featurescol="features", probabilitycol="probability")

# create paramgrid for cross validation
paramgrid = paramgridbuilder() \
    .addgrid(rf.numtrees, [10, 20 ]) \
    .addgrid(rf.maxdepth, [5, 10]) \
    .build()

# create 5-fold crossvalidator
crossval = crossvalidator(estimator=rf,
                          estimatorparammaps=paramgrid,
                          evaluator=binaryclassificationevaluator(labelcol="class", metricname="areaunderroc"),
                          numfolds=5)

第 4 步:拟合、运行交叉验证,并选择最佳参数集

# run cross-validation, and choose the best set of parameters
rf_model = crossval.fit(train_data)

# make predictions on test data
predictions_rf = rf_model.transform(test_data)

# evaluate random forest model
binary_evaluator = binaryclassificationevaluator(labelcol="class", rawpredictioncol="rawprediction", metricname="areaunderroc")
pr_evaluator = binaryclassificationevaluator(labelcol="class", rawpredictioncol="rawprediction", metricname="areaunderpr")

auc_rf = binary_evaluator.evaluate(predictions_rf)
auprc_rf = pr_evaluator.evaluate(predictions_rf)
print(f"random forest - auc: {auc_rf:.4f}, auprc: {auprc_rf:.4f}")

# udf to extract positive probability from probability vector
extract_prob = udf(lambda prob: float(prob[1]), floattype())
predictions_rf = predictions_rf.withcolumn("positive_probability", extract_prob(col("probability")))

第 5 步计算精确率、召回率和 f1 分数的函数

Napkin AI
Napkin AI

Napkin AI 可以将您的文本转换为图表、流程图、信息图、思维导图视觉效果,以便快速有效地分享您的想法。

下载
# function to calculate precision, recall, and f1-score
def calculate_metrics(predictions):
    tp = predictions.filter((col("class") == 1) & (col("prediction") == 1)).count()
    fp = predictions.filter((col("class") == 0) & (col("prediction") == 1)).count()
    fn = predictions.filter((col("class") == 1) & (col("prediction") == 0)).count()

    precision = tp / (tp + fp) if (tp + fp) != 0 else 0
    recall = tp / (tp + fn) if (tp + fn) != 0 else 0
    f1_score = (2 * precision * recall) / (precision + recall) if (precision + recall) != 0 else 0

    return precision, recall, f1_score

第 6 步:找到模型的最佳阈值

# find the best threshold for the model
best_threshold = 0.5
best_f1 = 0
for threshold in np.arange(0.1, 0.9, 0.1):
    thresholded_predictions = predictions_rf.withcolumn("prediction", (col("positive_probability") > threshold).cast("double"))
    precision, recall, f1 = calculate_metrics(thresholded_predictions)

    if f1 > best_f1:
        best_f1 = f1
        best_threshold = threshold

print(f"best threshold: {best_threshold}, best f1-score: {best_f1:.4f}")

第七步:评估未见过的数据

# evaluate on unseen data
predictions_unseen = rf_model.transform(unseen_data)
auc_unseen = binary_evaluator.evaluate(predictions_unseen)
print(f"unseen data - auc: {auc_unseen:.4f}")

precision, recall, f1 = calculate_metrics(predictions_unseen)
print(f"unseen data - precision: {precision:.4f}, recall: {recall:.4f}, f1-score: {f1:.4f}")

area_under_roc = binary_evaluator.evaluate(predictions_unseen)
area_under_pr = pr_evaluator.evaluate(predictions_unseen)
print(f"unseen data - auc: {area_under_roc:.4f}, auprc: {area_under_pr:.4f}")

结果

best threshold: 0.30000000000000004, best f1-score: 0.9062
unseen data - auc: 0.9384
unseen data - precision: 0.9655, recall: 0.7568, f1-score: 0.8485
unseen data - auc: 0.9423, auprc: 0.8618

然后您可以保存此模型(几kb)并在 pyspark 管道中的任何地方使用它

rf_model.save()

这就是 pyspark 在处理现实机器学习任务中的大型数据集时产生巨大差异的原因:

轻松扩展:pyspark 可以跨集群分配任务,让您能够在不耗尽内存的情况下处理 tb 级的数据。
动态数据处理:pyspark 不需要将整个数据集加载到内存中。它根据需要处理数据,这使得它更加高效。
更快的模型训练:借助分布式计算,您可以通过在多台机器上分配计算工作负载来更快地训练模型。
最后的想法
pytorch 和 tensorflow 是构建机器学习模型的绝佳工具,但对于现实世界的大规模任务,您需要更多。使用 pyspark 进行分布式计算可让您高效处理庞大数据集、实时处理数据并扩展机器学习管道。

因此,下次您处理海量数据时(无论是欺诈检测、推荐系统还是财务分析),请考虑使用 pyspark 将您的项目提升到一个新的水平。

有关完整的代码和结果,请查看此笔记本。 :
https://colab.research.google.com/drive/1w9naxnzirirlrodsenhauwevyd5lh8d4?authuser=5#scrollto=odmodmqkcy23

__

我是 swapnil,请随意留下您的评论、结果和想法,或者联系我 - swapnil@nooffice.no 获取数据、软件开发工作和工作

相关专题

更多
什么是分布式
什么是分布式

分布式是一种计算和数据处理的方式,将计算任务或数据分散到多个计算机或节点中进行处理。本专题为大家提供分布式相关的文章、下载、课程内容,供大家免费下载体验。

325

2023.08.11

分布式和微服务的区别
分布式和微服务的区别

分布式和微服务的区别在定义和概念、设计思想、粒度和复杂性、服务边界和自治性、技术栈和部署方式等。本专题为大家提供分布式和微服务相关的文章、下载、课程内容,供大家免费下载体验。

231

2023.10.07

常用的数据库软件
常用的数据库软件

常用的数据库软件有MySQL、Oracle、SQL Server、PostgreSQL、MongoDB、Redis、Cassandra、Hadoop、Spark和Amazon DynamoDB。更多关于数据库软件的内容详情请看本专题下面的文章。php中文网欢迎大家前来学习。

970

2023.11.02

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

20

2025.12.22

Python 深度学习框架与TensorFlow入门
Python 深度学习框架与TensorFlow入门

本专题深入讲解 Python 在深度学习与人工智能领域的应用,包括使用 TensorFlow 搭建神经网络模型、卷积神经网络(CNN)、循环神经网络(RNN)、数据预处理、模型优化与训练技巧。通过实战项目(如图像识别与文本生成),帮助学习者掌握 如何使用 TensorFlow 开发高效的深度学习模型,并将其应用于实际的 AI 问题中。

17

2026.01.07

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

431

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

20

2025.12.22

http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1969

2024.08.16

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号