
注意:此代码是用 python 3.6.1 (+gensim 2.3.0) 编写的
doc2vec与gensim的python实现及应用
import re import numpy as np from gensim.models import doc2vec from gensim.models.doc2vec import taggeddocument from nltk.corpus import gutenberg from multiprocessing import pool from scipy import spatial
sentences = list(gutenberg.sents('shakespeare-hamlet.txt')) # import the corpus and convert into a list
print('type of corpus: ', type(sentences))
print('length of corpus: ', len(sentences))
语料库类型:类“list”
语料库长度:3106
print(sentences[0]) # title, author, and year print(sentences[1]) print(sentences[10])
['[', 'the', '悲剧', 'of', '哈姆雷特', 'by', '威廉', '莎士比亚', '1599', ']']
['actus', 'primus', '.']
['弗兰', '.']
预处理数据
for i in range(len(sentences)):
sentences[i] = [word.lower() for word in sentences[i] if re.match('^[a-za-z]+', word)]
print(sentences[0]) # title, author, and year
print(sentences[1])
print(sentences[10])
['the'、'悲剧'、'of'、'哈姆雷特'、'by'、'威廉'、'莎士比亚']
['actus', 'primus']
['弗兰']
for i in range(len(sentences)):
sentences[i] = taggeddocument(words = sentences[i], tags = ['sent{}'.format(i)]) # converting each sentence into a taggeddocument
sentences[0]
taggeddocument(words=['the', 'tragedie', 'of', 'hamlet', 'by', 'william', 'shakespeare'], tags=['sent0'])
model = doc2vec(documents = sentences,dm = 1, size = 100, min_count = 1, iter = 10, workers = pool()._processes) model.init_sims(replace = true)
model.save('doc2vec_model')
model = doc2vec.load('doc2vec_model')
model.most_similar('hamlet')
[('horatio', 0.9978846311569214),
('女王', 0.9971947073936462),
('莱尔特斯', 0.9971820116043091),
('国王', 0.9968599081039429),
('妈妈', 0.9966716170310974),
('哪里', 0.9966292381286621),
('迪尔', 0.9965540170669556),
('奥菲莉亚', 0.9964221715927124),
('非常', 0.9963752627372742),
('哦', 0.9963476657867432)]
v1 = model['king']
v2 = model['queen']
# define a function that computes cosine similarity between two words
def cosine_similarity(v1, v2):
return 1 - spatial.distance.cosine(v1, v2)
cosine_similarity(v1, v2)
0.99437165260314941
立即学习“Python免费学习笔记(深入)”;
以上就是使用 Python 进行词嵌入:docc的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号