编辑 | KX
蛋白质在生物体内扮演着不可或缺的角色,准确预测其功能对于实际应用至关重要。尽管高通量技术促进了蛋白质序列数据的激增,但揭示蛋白质的确切功能仍然需要大量时间和资源。目前,许多方法都依赖于蛋白质序列进行预测,而针对蛋白质结构的方法很少。
为了应对这些挑战,东北大学的研究人员从蛋白质结构出发,提出将卷积神经网络 (CNN)和图卷积网络 (GCN)结合成一个统一框架,称为双模型自适应权重融合网络 (Two-model Adaptive Weight Fusion Network,TAWFN),用于蛋白质功能预测。
TAWFN 在预测蛋白质结构功能方面表现出了良好的性能,优于现有方法。
相关研究以「TAWFN: a deep learning framework for protein function prediction」为题,于 9 月 23 日发布在《Bioinformatics》上。
准确识别蛋白质功能有助于更深入地了解疾病机制,并有望发现新的治疗靶点。
开发一种准确有效的蛋白质功能预测方法至关重要。当前预测蛋白质功能的方法主要集中在三个领域:蛋白质序列、蛋白质结构和蛋白质-蛋白质相互作用网络。
当前针对蛋白质结构的方法很少,通常单独使用卷积神经网络 (CNN) 或图卷积网络 (GCN)。单独使用 CNN 或 GCN 存在以下问题:
为了解决这些问题,东北大学研究人员提出了一种新型蛋白质功能预测方法 TAWFN。该方法集成了 CNN 和 GCN,同时利用了蛋白质结构和蛋白质语言模型。对蛋白质结构进行处理,得到相应的蛋白质序列。
研究的主要贡献总结如下:
具体而言,TAWFN 的结构如下图所示,主要由四个模块组成:(1)输入数据生成模块:该模块生成蛋白质接触图和序列编码特征,包括 ESM-1b 编码和独热编码。(2)基于 GCN 的 AGCN 模块:该模块包括两个子模块 AGCN1 和 AGCN2,两个子模块在处理不同的输入时共享同一个 AGCN 网络。它产生初步的预测结果。(3)基于 CNN 的 MCNN 模块:该模块生成初步的预测结果
。(4)自适应融合模块:该模块通过计算将两个初步预测结果,
和
融合,生成最终的预测分数。
为了评估方法的有效性,研究人员在 PDBset 和 AFset 数据集上进行了实验。主要使用指标 Fmax、Smin 和 AUPR 来评估方法的性能。Fmax 指标表示在所有预测阈值上计算出的最大 F 值。Smin 表示预测注释和真实注释之间的语义距离,考虑到每个函数的信息内容。AUPR 使用梯形规则近似计算精确度-召回率曲线下的面积,评估模型在不同预测阈值上的性能。Smin 值越低越好,而 Fmax 和 AUPR 值越高则表示性能越好。
为了评估方法的有效性,研究人员在 PDBset 和 AFset 数据集上进行了实验。将 TAWFN 方法与几种基线方法进行了比较,包括 Blast、FunFam、DeepGO、DeepGOPlus、DeepFRI、GAT-GO、ATGO、SPROF-GO、DeepGO-SE 和 HEAL。
对于分子功能、生物过程和细胞成分任务,TAWFN 的精确召回曲线下面积 (AUPR) 值分别为 0.718、0.385 和 0.488,对应的 Fmax 得分分别为 0.762、0.628 和 0.693,Smin 得分分别为 0.326、0.483 和 0.454。
这些结果超越了基于 GCN 的最佳方法 HEAL 的性能。这表明结合了 GCN 和 CNN 的 TAWFN 可以更全面地学习蛋白质结构内的特征。此外,AGCN 中的多头注意力机制(MHA)通过图池化有效地学习蛋白质图特征,而 MCNN 中的 MCAM 则捕获蛋白质序列的全局特征。这些因素有助于 TAWFN 在蛋白质功能预测中的有效性。
针对 MCNN 和 AGCN,研究人员设计了消融实验来验证二者结合的有效性,并验证了 LSTM 在 AGCN 中的作用。结果如表 2 所示。
可以观察到,MCNN 的性能优于 AGCN,说明 MCNN 中 MCAM 产生的全局信息有利于蛋白质预测。而且,当 MCNN 和 AGCN 在网络中结合时,性能优于每个模块单独预测。这表明这种组合不仅从局部和全局的角度提高了特征的学习,而且还注重细节。总体而言,TAWFN 方法对蛋白质功能预测性能有增强作用。
研究人员表示:「在未来的研究中,我们的目标是引入更多可学习的特征,利用多视图技术,并预测新的蛋白质结构。」
以上就是从结构准确预测蛋白质功能,东北大学「CNN+GCN」统一框架,优于现有方法的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号