合理创建机器学习训练数据
在机器学习中,构建用于训练模型的学习数据至关重要。然而,有时我们面临数据量不足的情况,需要尽可能合理地增加数据。
重采样和过采样
对于数据量不足的情况,有两种常用的处理方式:
过采样:除了重采样之外,还创造新的数据,例如:
特殊情况下的处理
您提到了具有重复特征的数据(例如 NUM1 中的三个 A)。可以考虑以下处理方式:
要特别注意:
以上就是如何合理创建机器学习训练数据?的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号