
在使用python执行spark算子时,经常会遇到错误提示“24/06/17 16:31:58 error executor: exception in task 0.0 in stage 0.0 (tid 0)
java.net.socketexception: connection reset”。这通常是由网络问题或spark配置问题引起的。
以下是解决此问题的步骤:
from pyspark import sparkconf, sparkcontext
conf = sparkconf() \
.setappname("yourappname") \
.setmaster("local[*]") \
.set("spark.executor.memory", "4g") \
.set("spark.executor.cores", "2") \
.set("spark.driver.memory", "4g")
sc = sparkcontext(conf=conf)conf.set("spark.network.timeout", "600s")
conf.set("spark.executor.heartbeatinterval", "100s")rdd = sc.textfile("hdfs://path/to/your/file").repartition(100)from pyspark import SparkConf, SparkContext
conf = SparkConf() \
.setAppName("YourAppName") \
.setMaster("local[*]") \
.set("spark.executor.memory", "4g") \
.set("spark.executor.cores", "2") \
.set("spark.driver.memory", "4g") \
.set("spark.network.timeout", "600s") \
.set("spark.executor.heartbeatInterval", "100s")
sc = SparkContext(conf=conf)
# 你的spark任务代码
rdd = sc.textFile("hdfs://path/to/your/file").repartition(100)
result = rdd.map(lambda x: x).collect()
print(result)以上就是Python Spark算子执行报错Connection reset:如何排查及解决?的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号