请我喝杯咖啡☕
*我的帖子解释了 mnist。
mnist() 可以使用 mnist 数据集,如下所示:
*备忘录:
from torchvision.datasets import mnist train_data = mnist( root="data" ) train_data = mnist( root="data", train=true, transform=none, target_transform=none, download=false ) train_data # dataset mnist # number of datapoints: 60000 # root location: data # split: train train_data.root # 'data' train_data.train # true print(train_data.transform) # none print(train_data.target_transform) # none train_data.download # <bound method mnist.download of dataset mnist # number of datapoints: 60000 # root location: data # split: train> train_data[0] # (<pil.image.image image mode=l size=28x28>, 5) train_data[1] # (<pil.image.image image mode=l size=28x28>, 0) train_data[2] # (<pil.image.image image mode=l size=28x28>, 4) train_data[3] # (<pil.image.image image mode=l size=28x28>, 1) train_data.classes # ['0 - zero', # '1 - one', # '2 - two', # '3 - three', # '4 - four', # '5 - five', # '6 - six', # '7 - seven', # '8 - eight', # '9 - nine']
from torchvision.datasets import MNIST train_data = MNIST( root="data" ) test_data = MNIST( root="data", train=False ) import matplotlib.pyplot as plt def show_images(data): plt.figure(figsize=(10, 2)) col = 4 for i, (image, label) in enumerate(data, 1): plt.subplot(1, col, i) plt.title(label) plt.imshow(image) if i == col: break plt.show() show_images(data=train_data) show_images(data=test_data)
以上就是PyTorch 中的 MNIST的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号