Langserve中实现动态RAG应用:Langchain链式输入处理教程

DDD
发布: 2025-10-24 09:11:49
原创
394人浏览过

Langserve中实现动态RAG应用:Langchain链式输入处理教程

本教程详细阐述如何在langserve中构建支持动态输入的rag(检索增强生成)应用。文章通过langchain的runnable接口,展示如何将用户查询和目标语言作为动态参数传递给检索器和llm提示模板,从而实现灵活、可配置的交互式ai服务。内容涵盖链式组件的构建、langserve路由配置及示例代码,帮助开发者轻松部署动态rag解决方案。

在构建基于Langchain的RAG(Retrieval Augmented Generation)应用时,一个常见的需求是能够动态地接收用户输入,例如查询问题和目标语言,而不是将它们硬编码在代码中。当使用Langserve部署这些应用时,实现动态输入是提升应用灵活性和用户体验的关键。本教程将指导您如何通过Langchain的Runnable接口,构建一个能够接受动态输入的Langserve RAG应用。

理解Langserve与动态输入

Langserve允许您将Langchain的Runnable对象作为API端点暴露。当一个Runnable被添加到Langserve应用中时,Langserve会自动解析其输入签名,并在Playground界面中生成相应的输入字段。要实现动态输入,核心在于构建一个Langchain链,使其能够从初始输入中提取所需的参数,并将其传递给链中的各个组件(如检索器、提示模板)。

构建动态RAG链的核心组件

为了实现动态RAG,我们需要将检索、文档格式化、提示构建和LLM调用等步骤串联起来,并确保每个步骤都能正确接收其所需的动态输入。

  1. 检索器(Retriever): 检索器需要一个查询字符串作为输入。在动态链中,这个查询字符串将来自用户的初始输入。
  2. 文档格式化(Document Formatter): 检索器返回的是文档对象列表,通常需要将其格式化为单一字符串以便填充到提示模板中。
  3. 提示模板(Prompt Template): 提示模板需要上下文信息(格式化的文档)和用户问题,以及目标语言。
  4. 语言模型(LLM): LLM接收填充好的提示,并生成最终答案。

我们将使用RunnablePassthrough和RunnableLambda来编排这些组件。

逐步构建动态RAG链

首先,确保您已经安装了必要的库:

pip install langchain langchain-openai langserve uvicorn faiss-cpu
登录后复制

接下来,我们将定义一个完整的Langchain RAG链。

LangChain
LangChain

一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。

LangChain 53
查看详情 LangChain
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_core.promnpts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.llms import OpenAI # 示例LLM
from langchain_community.embeddings import OpenAIEmbeddings # 示例嵌入模型
from langchain_community.vectorstores import FAISS # 示例向量存储
from langchain_core.documents import Document
import os

# 确保设置了OpenAI API Key
# os.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"

# 1. 初始化一个示例检索器
# 在实际应用中,这里会加载您的文档并构建一个向量存储
# 为了演示,我们创建一个简单的FAISS向量存储和检索器
documents = [
    Document(page_content="财务账户通常包含资产、负债、权益、收入和支出。"),
    Document(page_content="主要的财务报表包括利润表、资产负债表和现金流量表。"),
    Document(page_content="公司的盈利能力可以通过利润表来评估。"),
    Document(page_content="资产负债表反映了公司在特定时间点的财务状况。")
]
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_documents(documents, embeddings)
retriever = vectorstore.as_retriever()

# 2. 初始化LLM
llm = OpenAI(temperature=0) # 可以替换为其他LLM,如ChatOpenAI

# 3. 定义文档格式化函数
def format_docs(docs):
    """将检索到的文档列表格式化为单个字符串"""
    return "\n\n".join(doc.page_content for doc in docs)

# 4. 构建动态RAG链
# 链的输入将是一个字典,例如 {"question": "...", "lang": "..."}
rag_chain = (
    # 步骤1: 接收初始输入,并使用RunnablePassthrough.assign将检索结果添加到输入字典中
    # RunnableLambda(retriever.get_relevant_documents) 包装了检索器方法,
    # .bind(input=lambda x: x["question"]) 确保检索器接收到输入字典中的"question"字段
    RunnablePassthrough.assign(
        documents=RunnableLambda(retriever.get_relevant_documents).bind(input=lambda x: x["question"])
    )
    # 步骤2: 再次使用RunnablePassthrough.assign,将格式化后的文档作为"context"添加到输入字典中
    | RunnablePassthrough.assign(
        context=lambda x: format_docs(x["documents"])
    )
    # 步骤3: 构建ChatPromptTemplate,它会从输入字典中获取"context"、"question"和"lang"
    | ChatPromptTemplate.from_template(
        "根据以下上下文信息:\n{context}\n\n请回答问题: {question}\n严格用{lang}语言回答。"
    )
    # 步骤4: 调用LLM
    | llm
    # 步骤5: 解析LLM的输出为字符串
    | StrOutputParser()
)
登录后复制

在这个链中:

  • RunnablePassthrough.assign(documents=...) 允许我们将检索器的结果(documents)添加到链的输入字典中,供后续步骤使用。RunnableLambda用于将一个普通函数(或方法)包装成一个Runnable。.bind(input=lambda x: x["question"]) 是关键,它告诉RunnableLambda从当前的输入字典x中取出"question"作为检索器的输入。
  • 第二个 RunnablePassthrough.assign(context=...) 类似地,将格式化后的文档作为context添加到输入字典。
  • ChatPromptTemplate.from_template(...) 会自动从其接收到的输入字典中查找{context}、{question}和{lang}对应的键值来填充模板。

Langserve部署

现在,我们将这个动态RAG链部署到Langserve应用中。

from fastapi import FastAPI
from langserve import add_routes
import uvicorn

# 创建FastAPI应用实例
app = FastAPI(
    title="动态RAG应用",
    version="1.0",
    description="一个支持动态查询和语言的Langserve RAG应用。",
)

# 将RAG链添加到Langserve路由
# input_type参数可以帮助Langserve Playground更好地展示输入字段
add_routes(
    app,
    rag_chain,
    path="/dynamic_rag",
    input_type={"question": str, "lang": str},
    # 可以在此处添加config_schema来进一步定义可配置项,
    # 但对于简单的动态输入,input_type已足够
)

if __name__ == "__main__":
    uvicorn.run(app, host="localhost", port=8000)
登录后复制

运行上述代码,然后访问 http://localhost:8000/dynamic_rag/playground。您会看到Langserve Playground自动生成了question和lang两个输入字段,允许您动态输入查询和目标语言。

注意事项与扩展

  1. 错误处理与输入验证: 在实际生产环境中,您应该为输入添加更健壮的验证机制,例如使用Pydantic模型来定义输入结构。
  2. 异步操作: 对于高性能需求,可以考虑使用异步版本的LLM和检索器,并相应地调整链的构建。
  3. configurable_alternate 的应用: 虽然本教程主要通过标准链式组合实现动态输入,但Langchain的configurable_alternate在更复杂的场景下非常有用。例如,如果您想根据用户输入或配置动态地切换不同的检索器(如,对于财务问题使用财务检索器,对于技术问题使用技术检索器),那么configurable_alternate将是理想的选择。它允许您基于一个配置键来选择执行哪个Runnable。
  4. 安全性: 部署到生产环境时,务必考虑API密钥的安全性,不要直接硬编码在代码中,而应使用环境变量或秘密管理服务。
  5. 可观测性: 结合Langsmith等工具可以更好地监控和调试您的Langserve应用。

通过以上步骤,您已经成功构建了一个能够接收动态输入并由Langserve托管的RAG应用。这种方法提供了极大的灵活性,使得您的AI应用能够根据用户的具体需求提供定制化的响应。

以上就是Langserve中实现动态RAG应用:Langchain链式输入处理教程的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号