请我喝杯咖啡☕
*我的帖子解释了 imagenet。
imagenet()可以使用imagenet数据集,如下所示:
*备忘录:
from torchvision.datasets import ImageNet
from torchvision.datasets.folder import default_loader
train_data = ImageNet(
root="data"
)
train_data = ImageNet(
root="data",
split="train",
transform=None,
target_transform=None,
loader=default_loader
)
val_data = ImageNet(
root="data",
split="val"
)
len(train_data), len(val_data)
# (1281167, 50000)
train_data
# Dataset ImageNet
# Number of datapoints: 1281167
# Root location: D:/data
# Split: train
train_data.root
# 'data'
train_data.split
# 'train'
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.loader
# <function torchvision.datasets.folder.default_loader(path: str) -> Any>
len(train_data.classes), train_data.classes
# (1000,
# [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'),
# ('great white shark', 'white shark', 'man-eater', 'man-eating shark',
# 'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'),
# ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish',
# 'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',),
# ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike',
# 'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')])
train_data[0]
# (<PIL.Image.Image image mode=RGB size=250x250>, 0)
train_data[1]
# (<PIL.Image.Image image mode=RGB size=200x150>, 0)
train_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
train_data[1300]
# (<PIL.Image.Image image mode=RGB size=640x480>, 1)
train_data[2600]
# (<PIL.Image.Image image mode=RGB size=500x375>, 2)
val_data[0]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[1]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[50]
# (<PIL.Image.Image image mode=RGB size=500x500>, 1)
val_data[100]
# (<PIL.Image.Image image mode=RGB size=679x444>, 2)
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
plt.figure(figsize=[12, 6])
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
plt.subplot(2, 5, i)
im, lab = data[j]
plt.imshow(X=im)
plt.title(label=lab)
plt.tight_layout(h_pad=3.0)
plt.show()
train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100]
val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350]
show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=val_data, ims=val_ims, main_title="val_data")


以上就是PyTorch 中的 ImageNet的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号