请我喝杯咖啡☕
*备忘录:
centercrop() 可以裁剪零个或多个图像,以它们为中心,如下所示:
*备忘录:
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import CenterCrop
centercrop = CenterCrop(size=100)
centercrop
# CenterCrop(size=(100, 100))
centercrop.size
# (100, 100)
origin_data = OxfordIIITPet(
root="data",
transform=None
)
p600_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=600)
# transform=CenterCrop(size=[600])
# transform=CenterCrop(size=[600, 600])
)
p400_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=400)
)
p200_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=200)
)
p100_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=100)
)
p50_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=50)
)
p10_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=10)
)
p200p300_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=[200, 300])
)
p300p200_data = OxfordIIITPet(
root="data",
transform=CenterCrop(size=[300, 200])
)
import matplotlib.pyplot as plt
def show_images1(data, main_title=None):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
plt.imshow(X=im)
plt.tight_layout()
plt.show()
show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p600_data, main_title="p600_data")
show_images1(data=p400_data, main_title="p400_data")
show_images1(data=p200_data, main_title="p200_data")
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p50_data, main_title="p50_data")
show_images1(data=p10_data, main_title="p10_data")
print()
show_images1(data=p200p300_data, main_title="p200p300_data")
show_images1(data=p300p200_data, main_title="p300p200_data")
# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=0.8, fontsize=14)
for i, (im, _) in zip(range(1, 6), data):
plt.subplot(1, 5, i)
if not s:
s = [im.size[1], im.size[0]]
cc = CenterCrop(size=s) # Here
plt.imshow(X=cc(im)) # Here
plt.tight_layout()
plt.show()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p600_data", s=600)
show_images2(data=origin_data, main_title="p400_data", s=400)
show_images2(data=origin_data, main_title="p200_data", s=200)
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p50_data", s=50)
show_images2(data=origin_data, main_title="p10_data", s=10)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p200p300_data", s=[200, 300])
show_images2(data=origin_data, main_title="p300p200_data", s=[300, 200])










以上就是PyTorch 中的 CenterCrop的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号