拼写的后传播 - 如karpathy所解释

碧海醫心
发布: 2025-02-16 08:29:46
转载
740人浏览过

嗨!我是hexmos的创始人shrijith venkatrama。目前,我正在构建liveapi,该工具使您的代码中生成api文档非常容易。 添加标签以提高图形可读性

将标签参数添加到值类:

class value:
  def __init__(self, data, _children=(), _op='', label=''):
    self.data = data
    self._prev = set(_children)
    self._op = _op
    self.label = label

  def __repr__(self):
    return f"value(data={self.data})"

  def __add__(self, other):
    return value(self.data + other.data, (self, other), '+')

  def __mul__(self, other):
    return value(self.data * other.data, (self, other), '-')

a = value(2.0, label='a')
b = value(-3.0, label='b')
c = value(10, label='c')
e = a * b; e.label = 'e'
d = e + c; d.label = 'd'
print(d._prev)
print(d._op)
print("---")
print(e._prev)
print(e._op)
登录后复制

更新draw_dot将标签包括在图中

最初,我们的节点表达式为:

dot.node(name=uid, label="{ data %.4f }" % (n.data,), shape='record')
登录后复制

>替换为:

dot.node(name=uid, label="{ %s | data %.4f }" % (n.label, n.data), shape='record')
登录后复制

现在draw_dot(d)返回:

带有标签的重新渲染图

graph with labels 让我们在表达式中添加一些节点-f和l

44543468844

生成图:

draw_dot(l)
登录后复制

more complex expression我们上面构建的此图是布置节点的 forward-pass

我们要计算的 >我们想知道输入(权重-a,b,c,d,e,f)如何影响输出(损耗函数l)。因此 - 我们想找到:dl/dl,dl/df,dl/de,dl/dd,dl/dc,dl/db,dl/da。

添加毕业参数以适应反射

class value:
  def __init__(self, data, _children=(), _op='', label=''):
    self.data = data
    self._prev = set(_children)
    self._op = _op
    self.label = label
    self.grad = 0.0 # 0 means no impact on output to start with
登录后复制

更新节点图形信息

dot.node(name=uid, label="{ %s | data %.4f | grad %.4f }" % (n.label, n.data, n.grad), shape='record')
登录后复制

手动执行给定图的后传播

节点l graph with grad property

什么是dl/dl - 也就是说,如果我们少量更改l,它将如何影响输出l?答案显然是-1。

是,

l.grad = 1
登录后复制

表达

44543468844

节点d

l = d * f

by known rules:

dl/dd = f

by derivation:

dl/dd = 

(f(x+h) - f(x))/h = 

(d*f + h*f - d*f)/h = 

h*f/h =

f

that is, dl/dd = f = -2.0
登录后复制

>所以,我们做

d.grad = -2.0
登录后复制

节点f

通过对称,我们得到dl/df = d = 4.0
是,

f.grad = 4.0
登录后复制

新的更新图是这样的:

>


如何对衍生物进行数值验证

def verify_dl_by_df():
  h = 0.001

  a = value(2.0, label='a')
  b = value(-3.0, label='b')
  c = value(10, label='c')
  e = a * b; e.label = 'e'
  d = e + c; d.label = 'd'
  f = value(-2.0, label='f')
  l = d * f; l.label = 'l'
  l1 = l.data

  a = value(2.0, label='a')
  b = value(-3.0, label='b')
  c = value(10, label='c')
  e = a * b; e.label = 'e'
  d = e + c; d.label = 'd'
  f = value(-2.0 + h, label='f') # bumb f a little bit
  l = d * f; l.label = 'l'
  l2 = l.data

  print((l2 - l1)/h)

verify_dl_by_df() # prints out 3.9999 ~ 4
登录后复制

挑战 - 我们如何计算dl/dc?

updated graph我们知道dl/dd = -2.0-所以我们知道l如何受d。>>的影响

的问题是,c将如何影响l。

首先,我们可以计算“局部衍生物”,或者弄清楚c首先影响d。

是,

> dd/dc =?

我们知道:

d = c e

因此,一旦我们通过c进行区分,我们就会得到:dd/dc = 1

同样,dd/de = 1。

现在的问题是,如何将dd/dc和dl/dd组合在一起?

我们需要一些称为链条规则的东西:

因此,应用链条规则,我们得到:

百度虚拟主播
百度虚拟主播

百度智能云平台的一站式、灵活化的虚拟主播直播解决方案

百度虚拟主播 36
查看详情 百度虚拟主播

dl/dc = dl/dd * dd/dc
dl/dc = -2.0 * 1.0 = -2.0
登录后复制

同样,dl/de = -2.0

>

>让我们在python中设置值,然后重新绘制图表

>

18574658665

chain rule

找出dl/da和dl/db

我们知道:

dl/de = -2.0


我们想知道:

dl/da = dl/de * de/dagraph with grads for c & e

we know that:

e = a * b
de/da = b
de/da = b = -3.0
登录后复制

we can also find:

e = a * b
de/db = a
de/db = a = 2.0
登录后复制

>所以,现在要获得我们需要的东西:

dl/da = dl/de * de/da = -2.0 * -3.0 = 6.0
dl/db = dl/de * de/db = -2.0 * 2.0 = -4.0
登录后复制

我们在python中设置了值,然后redraw以获取完整图:>

a.grad = 6.0
b.grad = -4.0
登录后复制


参考

以上就是拼写的后传播 - 如karpathy所解释的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:dev.to网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号