Python Pandas:基于列数据类型进行条件赋值
本文演示如何在 Pandas DataFrame 中,根据 A 列和 B 列的数据类型执行条件赋值。假设我们有一个名为 df 的 DataFrame,包含 A 列和 B 列。
目标:
判断 A 列和 B 列中对应行的值是否均为整数类型。如果是,则在新的“判断”列中赋值为 "OK";否则,赋值为 "NO"。
解决方案:
利用 Pandas 的 apply() 方法结合 lambda 函数,可以优雅地实现这一目标:
import pandas as pd import numpy as np df['判断'] = df.apply(lambda row: "OK" if isinstance(row['A列'], (int, np.integer)) and isinstance(row['B列'], (int, np.integer)) else "NO", axis=1)
代码解释:
这种方法比使用 astype(int) 更为稳健,因为它不会因为类型转换错误而抛出异常,并且直接检查原始数据类型。 如果 A 列或 B 列包含非数值数据,astype(int) 会产生错误,而 isinstance 方法则能正确处理这种情况。
以上就是Pandas中如何根据A列和B列数据类型进行条件赋值?的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号