总结
豆包 AI 助手文章总结

Flask流式传输如何模拟ChatGPT的实时响应?

聖光之護
发布: 2025-03-23 11:08:11
原创
446人浏览过

flask流式传输如何模拟chatgpt的实时响应?

使用Flask流式传输模拟ChatGPT实时响应

许多应用,例如模拟ChatGPT的实时聊天或大型文件下载,都需要边生成边传输数据,避免客户端长时间等待。本文演示如何在Python Flask框架中实现这种流式传输,并修正原代码中的缺陷。

原代码尝试使用yield实现流式传输,但由于response对象在generate()函数结束后才返回,浏览器必须等待所有数据生成完毕才能显示内容,与实时响应预期不符。

问题代码:

from time import sleep
from flask import Flask, Response, stream_with_context

app = Flask(__name__)

@app.route('/stream', methods=['GET'])
def stream():
    def generate():
        for i in range(1, 21):
            print(i)
            yield f'this is item {i}\n'
            sleep(0.5)

    return Response(generate(), mimetype='text/plain')


if __name__ == '__main__':
    app.run(debug=True)
登录后复制

解决方法:正确使用Flask的stream_with_context装饰器。该装饰器确保每次yield都立即返回数据给客户端,实现真正的流式传输。改进后的代码:

from flask import stream_with_context, request, jsonify

@app.route('/stream')
def streamed_response():
    def generate():
        yield 'Hello '
        yield request.args.get('name', 'World') # 使用get()避免KeyError
        yield '!'
    return jsonify({'message': list(stream_with_context(generate()))}) # 返回JSON格式
登录后复制

stream_with_context包裹了generate函数,使每次yield都立即发送数据。 示例中数据生成简单,实际应用中generate函数可能包含更复杂的逻辑(例如数据库查询或复杂计算),但stream_with_context的作用仍然是确保数据及时传输。 request.args.get('name', 'World')从请求参数获取数据,实现更灵活的流式传输,并使用get()方法处理缺失参数的情况,避免KeyError错误。 最后,使用jsonify将结果封装成JSON格式返回,更适合前端处理。

通过以上改进,可以有效模拟ChatGPT的实时响应效果。

以上就是Flask流式传输如何模拟ChatGPT的实时响应?的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
豆包 AI 助手文章总结
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号