转载自:http://yangguan.org/mapreduce-patterns-algorithms-and-use-cases/翻译自:http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/在这篇文章里总结了几种网上或者论文中常见的MapReduce模式和算法,并系统化的解释了这些技术的不同
转载自:http://yangguan.org/mapreduce-patterns-algorithms-and-use-cases/ 翻译自:http://highlyscalable.wordpress.com/2012/02/01/mapreduce-patterns/ 在这篇文章里总结了几种网上或者论文中常见的MapReduce模式和算法,并系统化的解释了这些技术的不同之处。所有描述性的文字和代码都使用了标准hadoop的MapReduce模型,包括Mappers, Reduces, Combiners, Partitioners,和 sorting。如下图所示。
采用 php+mysql 数据库方式运行的强大网上商店系统,执行效率高速度快,支持多语言,模板和代码分离,轻松创建属于自己的个性化用户界面 v3.5更新: 1).进一步静态化了活动商品. 2).提供了一些重要UFT-8转换文件 3).修复了除了网银在线支付其它支付显示错误的问题. 4).修改了LOGO广告管理,增加LOGO链接后主页LOGO路径错误的问题 5).修改了公告无法发布的问题,可能是打压
0
class Mapper
method Map(docid id, doc d)
for all term t in doc d do
Emit(term t, count 1)
class Reducer
method Reduce(term t, counts [c1, c2,...])
sum = 0
for all count c in [c1, c2,...] do
sum = sum + c
Emit(term t, count sum)
这种方法的缺点显而易见,Mapper提交了太多无意义的计数。它完全可以通过先对每个文档中的词进行计数从而减少传递给Reducer的数据量:
class Mapper
method Map(docid id, doc d)
H = new AssociativeArray
for all term t in doc d do
H{t} = H{t} + 1
for all term t in H do
Emit(term t, count H{t})class Mapper method Map(docid id, doc d) for all term t in doc d do Emit(term t, count 1) class Combiner method Combine(term t, [c1, c2,...]) sum = 0 for all count c in [c1, c2,...] do sum = sum + c Emit(term t, count sum) class Reducer method Reduce(term t, counts [c1, c2,...]) sum = 0 for all count c in [c1, c2,...] do sum = sum + c Emit(term t, count sum)
class Mapper
method Map(id n, object N)
Emit(id n, object N)
for all id m in N.OutgoingRelations do
Emit(id m, message getMessage(N))
class Reducer
method Reduce(id m, [s1, s2,...])
M = null
messages = []
for all s in [s1, s2,...] do
if IsObject(s) then
M = s
else // s is a message
messages.add(s)
M.State = calculateState(messages)
Emit(id m, item M)
class N
State in {True = 2, False = 1, null = 0},
initialized 1 or 2 for end-of-line categories, 0 otherwise
method getMessage(object N)
return N.State
method calculateState(state s, data [d1, d2,...])
return max( [d1, d2,...] )class N
State is distance,
initialized 0 for source node, INFINITY for all other nodes
method getMessage(N)
return N.State + 1
method calculateState(state s, data [d1, d2,...])
min( [d1, d2,...] )class N State is PageRank method getMessage(object N) return N.State / N.OutgoingRelations.size() method calculateState(state s, data [d1, d2,...]) return ( sum([d1, d2,...]) )
class Mapper
method Initialize
H = new AssociativeArray
method Map(id n, object N)
p = N.PageRank / N.OutgoingRelations.size()
Emit(id n, object N)
for all id m in N.OutgoingRelations do
H{m} = H{m} + p
method Close
for all id n in H do
Emit(id n, value H{n})
class Reducer
method Reduce(id m, [s1, s2,...])
M = null
p = 0
for all s in [s1, s2,...] do
if IsObject(s) then
M = s
else
p = p + s
M.PageRank = p
Emit(id m, item M) Record 1: F=1, G={a, b}
Record 2: F=2, G={a, d, e}
Record 3: F=1, G={b}
Record 4: F=3, G={a, b}
Result:
a -> 3 // F=1, F=2, F=3
b -> 2 // F=1, F=3
d -> 1 // F=2
e -> 1 // F=2class Mapper
method Map(null, record [value f, categories [g1, g2,...]])
for all category g in [g1, g2,...]
Emit(record [g, f], count 1)
class Reducer
method Reduce(record [g, f], counts [n1, n2, ...])
Emit(record [g, f], null ) class Mapper
method Map(record [f, g], null)
Emit(value g, count 1)
class Reducer
method Reduce(value g, counts [n1, n2,...])
Emit(value g, sum( [n1, n2,...] ) )class Mapper
method Map(null, record [value f, categories [g1, g2,...] )
for all category g in [g1, g2,...]
Emit(value f, category g)
class Reducer
method Initialize
H = new AssociativeArray : category -> count
method Reduce(value f, categories [g1, g2,...])
[g1', g2',..] = ExcludeDuplicates( [g1, g2,..] )
for all category g in [g1', g2',...]
H{g} = H{g} + 1
method Close
for all category g in H do
Emit(category g, count H{g})class Mapper method Map(null, items [i1, i2,...] ) for all item i in [i1, i2,...] for all item j in [i1, i2,...] Emit(pair [i j], count 1) class Reducer method Reduce(pair [i j], counts [c1, c2,...]) s = sum([c1, c2,...]) Emit(pair[i j], count s)
class Mapper
method Map(null, items [i1, i2,...] )
for all item i in [i1, i2,...]
H = new AssociativeArray : item -> counter
for all item j in [i1, i2,...]
H{j} = H{j} + 1
Emit(item i, stripe H)
class Reducer
method Reduce(item i, stripes [H1, H2,...])
H = new AssociativeArray : item -> counter
H = merge-sum( [H1, H2,...] )
for all item j in H.keys()
Emit(pair [i j], H{j})class Mapper
method Map(rowkey key, tuple t)
if t satisfies the predicate
Emit(tuple t, null)class Mapper
method Map(rowkey key, tuple t)
tuple g = project(t) // extract required fields to tuple g
Emit(tuple g, null)
class Reducer
method Reduce(tuple t, array n) // n is an array of nulls
Emit(tuple t, null)class Mapper
method Map(rowkey key, tuple t)
Emit(tuple t, null)
class Reducer
method Reduce(tuple t, array n) // n is an array of one or two nulls
Emit(tuple t, null)class Mapper
method Map(rowkey key, tuple t)
Emit(tuple t, null)
class Reducer
method Reduce(tuple t, array n) // n is an array of one or two nulls
if n.size() = 2
Emit(tuple t, null)class Mapper
method Map(rowkey key, tuple t)
Emit(tuple t, string t.SetName) // t.SetName is either 'R' or 'S'
class Reducer
method Reduce(tuple t, array n) // array n can be ['R'], ['S'], ['R' 'S'], or ['S', 'R']
if n.size() = 1 and n[1] = 'R'
Emit(tuple t, null)class Mapper
method Map(null, tuple [value GroupBy, value AggregateBy, value ...])
Emit(value GroupBy, value AggregateBy)
class Reducer
method Reduce(value GroupBy, [v1, v2,...])
Emit(value GroupBy, aggregate( [v1, v2,...] ) ) // aggregate() : sum(), max(),...class Mapper
method Map(null, tuple [join_key k, value v1, value v2,...])
Emit(join_key k, tagged_tuple [set_name tag, values [v1, v2, ...] ] )
class Reducer
method Reduce(join_key k, tagged_tuples [t1, t2,...])
H = new AssociativeArray : set_name -> values
for all tagged_tuple t in [t1, t2,...] // separate values into 2 arrays
H{t.tag}.add(t.values)
for all values r in H{'R'} // produce a cross-join of the two arrays
for all values l in H{'L'}
Emit(null, [k r l] )class Mapper
method Initialize
H = new AssociativeArray : join_key -> tuple from R
R = loadR()
for all [ join_key k, tuple [r1, r2,...] ] in R
H{k} = H{k}.append( [r1, r2,...] )
method Map(join_key k, tuple l)
for all tuple r in H{k}
Emit(null, tuple [k r l] )原文地址:[转载]MapReduce的模式、算法和用例, 感谢原作者分享。
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
C++高性能并发应用_C++如何开发性能关键应用
Java AI集成Deep Java Library_Java怎么集成AI模型部署
Golang后端API开发_Golang如何高效开发后端和API
Python异步并发改进_Python异步编程有哪些新改进
C++系统编程内存管理_C++系统编程怎么与Rust竞争内存安全
Java GraalVM原生镜像构建_Java怎么用GraalVM构建高效原生镜像
Python FastAPI异步API开发_Python怎么用FastAPI构建异步API
C++现代C++20/23/26特性_现代C++有哪些新标准特性如modules和coroutines
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号