0

0

Python怎样实现推荐系统?协同过滤算法实践

絕刀狂花

絕刀狂花

发布时间:2025-07-02 18:48:03

|

198人浏览过

|

来源于php中文网

原创

协同过滤推荐系统可通过python的scikit-surprise库实现;具体步骤包括:1. 安装库并准备“用户-物品-评分”格式数据;2. 使用knn算法构建模型,选择基于用户或物品的相似度计算方式;3. 训练模型并进行推荐;4. 注意冷启动、稀疏矩阵、性能优化和评估指标等问题。

Python怎样实现推荐系统?协同过滤算法实践

推荐系统在如今的互联网产品中几乎是标配,像电商、视频平台、音乐App这些地方都能看到它的影子。如果你用Python做点小项目或者想了解背后的原理,协同过滤是个不错的起点。

Python怎样实现推荐系统?协同过滤算法实践

什么是协同过滤?

简单来说,协同过滤(Collaborative Filtering)是根据用户和物品之间的互动行为来推荐内容的一种方法。比如你在某视频网站上点赞了几个科技类视频,系统就可能认为你对这类内容感兴趣,然后给你推荐类似的东西。

Python怎样实现推荐系统?协同过滤算法实践

协同过滤主要分两种:

立即学习Python免费学习笔记(深入)”;

  • 基于用户的协同过滤:找和你兴趣相似的用户,看看他们喜欢什么。
  • 基于物品的协同过滤:找你喜欢过的物品,再看看哪些其他物品也经常被同一群人喜欢。

实际应用中,这两种方式都很常见,有时候也会结合使用。

Python怎样实现推荐系统?协同过滤算法实践

怎么用Python实现?

要在Python里动手实现一个简单的协同过滤推荐系统,最常用的是用scikit-surprise库,它封装好了很多经典的推荐算法,包括SVD、KNN等。

先安装一下:

pip install scikit-surprise

数据准备

你可以自己构造一个评分矩阵,也可以用现成的数据集,比如MovieLens的小型数据集。

Rationale
Rationale

Rationale 是一款可帮助企业主、经理和个人做出艰难的决定的AI工具

下载

假设你有一个这样的表格:

用户ID 物品ID 评分
1 101 5
1 102 3
2 101 4
... ... ...

这个结构就是标准的“用户-物品-评分”格式。

使用Surprise构建模型

代码大概长这样:

from surprise import Dataset, Reader, KNNBasic
from surprise.trainset import Trainset

# 假设你的数据是一个DataFrame,列名分别是 'userID', 'itemID', 'rating'
data = Dataset.load_builtin('ml-100k')  # 或者你自己构造的数据
trainset = data.build_full_trainset()

sim_options = {
    'name': 'cosine',
    'user_based': True  # True表示基于用户,False表示基于物品
}

model = KNNBasic(sim_options=sim_options)
model.fit(trainset)

# 给用户1推荐物品
uid = trainset.to_inner_uid(1)
preds = model.get_neighbors(uid, k=10)

这段代码的意思是,我们用K近邻算法,计算用户之间的相似度(或物品之间的相似度),然后找出最相近的10个用户或物品。

实践中的几个注意点

  • 冷启动问题:新用户或新物品没有历史记录,推荐效果会很差。这个问题很难避免,只能通过引入辅助信息(如标签、描述文本)来缓解。
  • 稀疏矩阵处理:现实中大多数用户只评过少量物品,评分矩阵非常稀疏,这时候可以考虑降维或者使用矩阵分解方法,比如SVD。
  • 性能优化:当用户和物品数量很大时,每次计算相似度会很慢,可以用离线计算+缓存的方式解决。
  • 评估指标:可以用RMSE、MAE来衡量预测评分的准确性,也可以用召回率、覆盖率等指标看推荐多样性。

推荐系统其实不复杂但容易忽略细节

如果你只是做个demo级别的东西,用上面的方法已经够用了。但如果要上线或用于真实业务场景,还需要考虑更多因素,比如实时性、扩展性、多目标推荐等。

总之,协同过滤是入门推荐系统的不错选择,而Python生态提供了足够丰富的工具让你快速实践。只要理解了基本思路,剩下的就是慢慢调参、优化的过程了。

基本上就这些,动手试试吧!

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

714

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

738

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

574

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

697

2023.08.11

JavaScript 性能优化与前端调优
JavaScript 性能优化与前端调优

本专题系统讲解 JavaScript 性能优化的核心技术,涵盖页面加载优化、异步编程、内存管理、事件代理、代码分割、懒加载、浏览器缓存机制等。通过多个实际项目示例,帮助开发者掌握 如何通过前端调优提升网站性能,减少加载时间,提高用户体验与页面响应速度。

3

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号