0

0

如何使用Hugging Face的Transformer库 Hugging Face模型加载与推理教程

P粉602998670

P粉602998670

发布时间:2025-07-05 10:19:01

|

862人浏览过

|

来源于php中文网

原创

使用hugging face的transformer库的关键步骤包括安装依赖、加载模型、处理输入和执行推理。1. 安装transformers和torch,建议用虚拟环境并优先学习pytorch;2. 用autotokenizer和automodelforxxx加载模型,注意任务类型匹配;3. 使用分词器编码文本并转为张量输入模型,通过softmax获取类别概率;4. 初学者可用pipeline简化操作,支持多种任务但灵活性较低。掌握这些步骤后即可在多数场景中应用。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

如何使用Hugging Face的Transformer库 Hugging Face模型加载与推理教程

如果你刚接触Hugging Face的Transformer库,可能会觉得它功能强大但不知从何下手。其实,只要掌握几个核心步骤——加载模型、处理输入、执行推理——你就能快速上手使用各种预训练模型了。

如何使用Hugging Face的Transformer库 Hugging Face模型加载与推理教程

1. 安装与环境准备

在开始之前,确保你的环境中已经安装了transformerstorch(或者tensorflow,根据你使用的框架)。

如何使用Hugging Face的Transformer库 Hugging Face模型加载与推理教程
pip install transformers torch

如果你打算用GPU加速推理,还需要安装对应的PyTorch版本或其他框架支持。这一步看似简单,但很多新手会忽略CUDA版本和依赖的匹配问题。

建议:

如何使用Hugging Face的Transformer库 Hugging Face模型加载与推理教程
  • 使用虚拟环境管理依赖,比如condavenv
  • 如果不确定用哪个框架,推荐先学PyTorch,因为大多数教程和社区资源都基于它

2. 加载预训练模型和分词器

Hugging Face提供了非常方便的接口来加载模型和对应的分词器。你只需要知道模型的名字,例如bert-base-uncased,就可以直接调用:

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("textattack/bert-base-uncased-imdb")

说明:

  • AutoTokenizerAutoModelForXXX 是自动识别模型结构的通用类
  • 模型名称可以是官方支持的,也可以是你自己下载或上传到Hugging Face Hub的模型

注意:有些模型需要指定任务类型,比如分类、生成、问答等,这时候不能直接使用AutoModel,而要选择具体类。


3. 处理输入并进行推理

加载好模型后,下一步就是把原始文本转换成模型能理解的输入格式。通常流程如下:

  1. 使用分词器对文本进行编码
  2. 将结果转为张量(tensor)
  3. 输入模型获取输出

示例代码如下:

Ideogram
Ideogram

Ideogram是一个全新的文本转图像AI绘画生成平台,擅长于生成带有文本的图像,如LOGO上的字母、数字等。

下载
inputs = tokenizer("I really enjoyed this movie!", return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits

关键点:

  • return_tensors="pt" 表示返回PyTorch张量
  • 输出的结果通常是logits,你需要通过argmaxsoftmax转换成实际类别

如果你想获得更直观的结果,可以用下面的方法:

import torch.nn.functional as F

probs = F.softmax(logits, dim=1)
print(probs.detach().numpy())

这样你可以看到每个类别的预测概率。


4. 使用Pipeline简化操作(适合初学者)

如果你不想手动处理那么多细节,Hugging Face还提供了一个高级API——pipeline,它封装了模型加载、数据处理和推理过程。

例如,做一个情感分析:

from transformers import pipeline

classifier = pipeline("sentiment-analysis", model="textattack/bert-base-uncased-imdb")
result = classifier("This film was amazing and I loved it!")
print(result)
# 输出:[{'label': 'POSITIVE', 'score': 0.9998}]

优势:

  • 快速实现常见任务
  • 代码简洁易懂
  • 内置支持多种任务,如翻译、摘要、NER等

缺点:

  • 灵活性不如手动控制
  • 不太适合做定制化开发

基本上就这些内容了。掌握了模型加载、输入处理、推理流程以及Pipeline的使用,你已经可以在大多数场景下使用Hugging Face的Transformer库完成任务了。虽然看起来步骤不多,但每一步都有容易出错的地方,比如模型版本不一致、输入格式错误等,多练习几次就能熟练应对。

相关专题

更多
硬盘接口类型介绍
硬盘接口类型介绍

硬盘接口类型有IDE、SATA、SCSI、Fibre Channel、USB、eSATA、mSATA、PCIe等等。详细介绍:1、IDE接口是一种并行接口,主要用于连接硬盘和光驱等设备,它主要有两种类型:ATA和ATAPI,IDE接口已经逐渐被SATA接口;2、SATA接口是一种串行接口,相较于IDE接口,它具有更高的传输速度、更低的功耗和更小的体积;3、SCSI接口等等。

1011

2023.10.19

PHP接口编写教程
PHP接口编写教程

本专题整合了PHP接口编写教程,阅读专题下面的文章了解更多详细内容。

60

2025.10.17

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

367

2025.12.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

19

2025.12.22

Python 深度学习框架与TensorFlow入门
Python 深度学习框架与TensorFlow入门

本专题深入讲解 Python 在深度学习与人工智能领域的应用,包括使用 TensorFlow 搭建神经网络模型、卷积神经网络(CNN)、循环神经网络(RNN)、数据预处理、模型优化与训练技巧。通过实战项目(如图像识别与文本生成),帮助学习者掌握 如何使用 TensorFlow 开发高效的深度学习模型,并将其应用于实际的 AI 问题中。

9

2026.01.07

pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

429

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

19

2025.12.22

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

78

2026.01.09

c++框架学习教程汇总
c++框架学习教程汇总

本专题整合了c++框架学习教程汇总,阅读专题下面的文章了解更多详细内容。

46

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Git 教程
Git 教程

共21课时 | 2.6万人学习

Git版本控制工具
Git版本控制工具

共8课时 | 1.5万人学习

Git中文开发手册
Git中文开发手册

共0课时 | 0人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号