0

0

Python如何进行异常检测?IsolationForest算法

蓮花仙者

蓮花仙者

发布时间:2025-07-08 14:53:02

|

333人浏览过

|

来源于php中文网

原创

isolationforest 是一种无监督异常检测算法,其核心思想是异常点更容易被孤立。它适用于无标签数据,适合高维空间且计算效率高。使用 python 实现 isolationforest 的步骤如下:1. 安装 scikit-learn、pandas 和 numpy;2. 导入模块并准备数值型数据,必要时进行编码处理;3. 设置 contamination 参数训练模型;4. 使用 predict 方法标记异常(-1 为异常);5. 分析结果并可选地进行可视化。应用时需注意 contamination 设置、数据标准化和适用规模,并广泛用于欺诈检测、故障预警和入侵检测等场景。

Python如何进行异常检测?IsolationForest算法

异常检测在数据分析和机器学习中是一个常见任务,尤其在识别数据中的“离群点”或“异常值”时非常有用。如果你的数据集没有明确的标签告诉你哪些是异常点,IsolationForest 是一个非常适合的选择。

Python如何进行异常检测?IsolationForest算法

什么是 IsolationForest?

IsolationForest(孤立森林)是一种专门用于无监督异常检测的算法。它的核心思想是:异常点更容易被“孤立”出来。相比正常数据点,异常点通常数量少、分布稀疏,在特征空间中更容易被分割出来。

Python如何进行异常检测?IsolationForest算法

这个算法不依赖数据的分布假设,适合处理高维数据,而且计算效率较高,是实际应用中比较常用的异常检测方法之一。

立即学习Python免费学习笔记(深入)”;


如何用 Python 实现 IsolationForest 异常检测?

要使用 IsolationForest,最常用的是 scikit-learn 库。下面是基本的实现步骤:

Python如何进行异常检测?IsolationForest算法

安装依赖库

pip install scikit-learn pandas numpy

基本流程如下:

  1. 导入必要的模块

    from sklearn.ensemble import IsolationForest
    import pandas as pd
    import numpy as np
  2. 准备数据

    数据最好是数值型的,如果是分类变量需要先做编码处理(如 one-hot 或 label encoding)。

    稿定AI绘图
    稿定AI绘图

    稿定推出的AI绘画工具

    下载
    # 示例数据
    data = np.random.randn(100, 2)
    df = pd.DataFrame(data, columns=['feature1', 'feature2'])
  3. 训练模型

    可以设置 contamination 参数来指定你认为数据中异常的比例,比如 0.05 表示 5% 的数据是异常的。

    model = IsolationForest(contamination=0.05, random_state=42)
    model.fit(df)
  4. 预测并标记异常

    使用 predict 方法可以得到每个样本是否为异常点的判断(-1 表示异常,1 表示正常)

    df['anomaly'] = model.predict(df)
  5. 查看结果

    你可以把异常点筛选出来看看:

    anomalies = df[df['anomaly'] == -1]
    print(anomalies)

IsolationForest 使用技巧与注意事项

  • contamination 参数很关键
    这个参数决定了模型认为有多少比例的数据是异常的。如果你对数据比较了解,可以根据经验设定;否则可以尝试多个值进行对比分析。

  • 注意标准化问题
    虽然 IsolationForest 不像距离类算法那样强烈依赖特征尺度,但为了公平比较不同特征的贡献,建议还是对数据进行标准化处理。

  • 可视化有助于理解结果
    如果是二维数据,可以用散点图把异常点标出来,这样能直观看到模型的划分效果。

  • 适用于中小规模数据集
    IsolationForest 在大数据上也能运行,但如果数据量特别大(比如百万级),可能要考虑采样或者换用其他更高效的算法。


实际应用场景举例

  • 信用卡欺诈检测:在交易数据中找出那些行为模式明显不同于大多数用户的交易。
  • 设备故障预警:从传感器数据中识别出偏离正常运行状态的异常信号。
  • 网络入侵检测:发现不符合常规访问模式的行为。

这些场景的共同特点是:没有明确的标签,但需要自动识别出少数“奇怪”的样本,而这正是 IsolationForest 擅长的地方。


基本上就这些了。IsolationForest 用起来不难,但在实际应用中还是要结合业务背景去调整参数,比如 contamination 和特征选择。只要数据准备得当,它往往能给出不错的结果。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

745

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1260

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

80

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号