使用 Python 提取栅格数据中多边形内外 NDVI 值

DDD
发布: 2025-08-17 18:34:01
原创
825人浏览过

使用 python 提取栅格数据中多边形内外 ndvi 值

本文介绍了如何使用 Python 编程提取栅格图像(如 NDVI 图像)中,多个多边形内部以及多边形外部的平均 NDVI 值。主要依赖 rasterio 和 fiona 库,通过加载矢量多边形数据,裁剪栅格图像,并计算裁剪区域的平均值,从而实现 NDVI 值的提取和分析。本文提供代码示例,帮助读者理解和应用相关技术。

正文

本文将指导您如何使用 Python 提取栅格数据(例如 NDVI 图像)中多边形内部和外部的平均值。 我们将使用 rasterio 和 fiona 库来完成此任务。 rasterio 用于读取和写入栅格数据,而 fiona 用于读取矢量数据(例如 shapefile)。

准备工作

立即学习Python免费学习笔记(深入)”;

在开始之前,请确保已安装以下 Python 库:

  • rasterio
  • fiona
  • numpy

您可以使用 pip 安装这些库:

pip install rasterio fiona numpy
登录后复制

代码实现

飞书多维表格
飞书多维表格

表格形态的AI工作流搭建工具,支持批量化的AI创作与分析任务,接入DeepSeek R1满血版

飞书多维表格26
查看详情 飞书多维表格

以下代码演示了如何提取多边形内部和外部的平均 NDVI 值:

import rasterio
import fiona
import rasterio.mask
import numpy as np

# 1. 定义输入文件路径
shapefile_path = "path/to/your/shapefile.shp"  # 替换为你的 shapefile 文件路径
raster_path = "path/to/your/ndvi.tif"  # 替换为你的 NDVI 栅格文件路径

# 2. 加载 shapefile 中的多边形
with fiona.open(shapefile_path, "r") as sf:
    shapes = [feature["geometry"] for feature in sf]

# 3. 读取栅格数据
with rasterio.open(raster_path) as src:
    # 3.1 提取多边形内部的 NDVI 值
    out_image, out_transform = rasterio.mask.mask(src, shapes, crop=True)
    # 清理无效值(例如 NaN 或 NoData 值)
    masked_array = np.ma.masked_invalid(out_image)
    NDVI_mean_inside = np.mean(masked_array)

    # 3.2 提取多边形外部的 NDVI 值
    out_image_outside, out_transform_outside = rasterio.mask.mask(src, shapes, crop=True, invert=True)
    # 清理无效值(例如 NaN 或 NoData 值)
    masked_array_outside = np.ma.masked_invalid(out_image_outside)
    NDVI_mean_outside = np.mean(masked_array_outside)


# 4. 打印结果
print(f"多边形内部平均 NDVI 值: {NDVI_mean_inside}")
print(f"多边形外部平均 NDVI 值: {NDVI_mean_outside}")
登录后复制

代码解释

  1. 导入必要的库: 导入 rasterio,fiona 和 numpy 库。
  2. 定义文件路径: 指定 shapefile 和栅格文件的路径。请务必替换为实际的文件路径。
  3. 加载 shapefile: 使用 fiona.open() 函数打开 shapefile,并提取所有多边形的几何信息。
  4. 读取栅格数据并提取 NDVI 值:
    • 使用 rasterio.open() 函数打开栅格文件。
    • 使用 rasterio.mask.mask() 函数裁剪栅格数据,提取多边形内部的 NDVI 值。 crop=True 参数表示裁剪结果仅包含多边形范围内的像素。
    • 使用 np.mean() 函数计算裁剪区域的平均 NDVI 值。
    • 使用 rasterio.mask.mask() 函数裁剪栅格数据,提取多边形外部的 NDVI 值。invert=True 参数表示裁剪区域为多边形外部。
    • 使用 np.mean() 函数计算裁剪区域的平均 NDVI 值。
  5. 打印结果: 将计算得到的平均 NDVI 值打印到控制台。

注意事项

  • 确保 shapefile 和栅格文件位于指定的路径,并且具有正确的格式。
  • 如果栅格数据包含无效值(例如 NaN 或 NoData 值),请在使用 np.mean() 函数之前使用 np.ma.masked_invalid() 函数进行屏蔽,避免影响计算结果。
  • rasterio.mask.mask() 函数返回的是一个 numpy 数组,你可以根据需要对其进行进一步的处理和分析。
  • 如果 shapefile 包含多个多边形,代码将提取所有多边形内部和外部的 NDVI 值,并计算平均值。如果需要分别提取每个多边形的 NDVI 值,请修改代码,循环处理每个多边形。
  • rasterio.mask 允许设置 all_touched=True 参数,以便包含与多边形边界相交的像素。默认情况下,仅包含完全位于多边形内的像素。

总结

本文介绍了使用 Python 和 rasterio、fiona 库提取栅格数据中多边形内部和外部平均 NDVI 值的方法。 通过加载 shapefile,裁剪栅格数据,并计算裁剪区域的平均值,您可以轻松地提取和分析特定区域的 NDVI 值。 这种方法可以应用于各种遥感应用,例如土地覆盖分类,植被监测和环境评估。

以上就是使用 Python 提取栅格数据中多边形内外 NDVI 值的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号