使用 Pandas 和 SciPy 进行多列 T 检验

聖光之護
发布: 2025-08-19 16:46:20
原创
952人浏览过

使用 pandas 和 scipy 进行多列 t 检验

本文介绍了如何使用 Pandas 和 SciPy 库对 Pandas DataFrame 中的多个列同时进行 t 检验。通过示例代码,详细展示了如何针对特定分组进行 t 检验,并提供了将方法推广到更多分组的解决方案。此外,还提醒了在进行多重比较时需要注意的问题,以及如何处理多重检验问题。

使用 Pandas 和 SciPy 进行多列 T 检验

T 检验是一种常用的统计方法,用于比较两组数据的均值是否存在显著差异。在数据分析中,我们经常需要对 DataFrame 中的多个列进行 t 检验,以评估不同类别变量对数值型变量的影响。本文将介绍如何使用 Pandas 和 SciPy 库高效地实现这一目标。

单个 T 检验

首先,我们创建一个示例 DataFrame:

import pandas as pd
from scipy.stats import ttest_ind

data = {'Product': ['laptop', 'printer','printer','printer','laptop','printer','laptop','laptop','printer','printer'],
        'Purchase_cost': [120.09, 150.45, 300.12, 450.11, 200.55,175.89,124.12,113.12,143.33,375.65],
        'Warranty_years':[3,2,2,1,4,1,2,3,1,2],
        'service_cost': [5,5,10,4,7,10,4,6,12,3]

        }

df = pd.DataFrame(data)

print(df)
登录后复制

假设我们想比较 Product 为 'laptop' 和 'printer' 的两组数据在 Purchase_cost 上的差异。我们可以使用以下代码:

#define samples
group1 = df[df['Product']=='laptop']
group2 = df[df['Product']=='printer']

#perform independent two sample t-test
ttest_ind(group1['Purchase_cost'], group2['Purchase_cost'])
登录后复制

这段代码首先根据 Product 列的值将 DataFrame 分为两组,然后使用 scipy.stats.ttest_ind 函数对两组数据的 Purchase_cost 列进行独立样本 t 检验。

同时对多列进行 T 检验

如果我们需要同时对多个列(例如 Purchase_cost、Warranty_years 和 service_cost)进行 t 检验,可以使用以下代码:

cols = df.columns.difference(['Product'])
# or with an explicit list
# cols = ['Purchase_cost', 'Warranty_years', 'service_cost']

group1 = df[df['Product']=='laptop']
group2 = df[df['Product']=='printer']
out = pd.DataFrame(ttest_ind(group1[cols], group2[cols]),
                   columns=cols, index=['statistic', 'pvalue'])

print(out)
登录后复制

这段代码首先获取需要进行 t 检验的列名列表 cols,然后将 DataFrame 分为两组。关键在于,ttest_ind 函数可以直接处理 2D 输入,即同时对多列数据进行 t 检验。最后,将结果存储在一个新的 DataFrame out 中,方便查看和分析。

行者AI
行者AI

行者AI绘图创作,唤醒新的灵感,创造更多可能

行者AI100
查看详情 行者AI

另一种实现方式是使用字典推导式:

out = pd.DataFrame({c: ttest_ind(group1[c], group2[c]) for c in cols},
                    index=['statistic', 'pvalue'])
登录后复制

这种方式更加简洁,但可读性可能稍差。

推广到更多分组

如果 DataFrame 中包含更多不同的 Product 值,并且我们希望比较所有可能的组合,可以使用 itertools.combinations 函数:

from itertools import combinations

cols = df.columns.difference(['Product'])

g = df.groupby('Product')[cols]

out = pd.concat({(a,b): pd.DataFrame(ttest_ind(g.get_group(a), g.get_group(b)),
                                     columns=cols, index=['statistic', 'pvalue'])
                 for a, b in combinations(df['Product'].unique(), 2)
                }, names=['product1', 'product2'])

print(out)
登录后复制

这段代码首先使用 groupby 函数按照 Product 列对 DataFrame 进行分组,然后使用 itertools.combinations 函数生成所有可能的组合。对于每一种组合,我们都进行 t 检验,并将结果存储在一个新的 DataFrame out 中。

注意事项

在进行多重比较时,需要注意多重检验问题。由于我们进行了多次 t 检验,因此出现假阳性的概率会增加。为了解决这个问题,可以采用一些多重检验校正方法,例如 Bonferroni 校正或 Benjamini-Hochberg 校正。这些校正方法可以调整 p 值,以控制假阳性率。

总结

本文介绍了如何使用 Pandas 和 SciPy 库对 Pandas DataFrame 中的多个列同时进行 t 检验。通过示例代码,详细展示了如何针对特定分组进行 t 检验,并提供了将方法推广到更多分组的解决方案。此外,还提醒了在进行多重比较时需要注意的问题。掌握这些技巧可以帮助我们更高效地进行数据分析。

以上就是使用 Pandas 和 SciPy 进行多列 T 检验的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门推荐
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号