0

0

使用Scikit-learn计算随机森林AUC的正确方法及原因分析

心靈之曲

心靈之曲

发布时间:2025-08-21 21:04:25

|

519人浏览过

|

来源于php中文网

原创

使用scikit-learn计算随机森林auc的正确方法及原因分析

本文旨在阐明在使用Scikit-learn计算随机森林模型的AUC(Area Under the Curve)时,为何使用predict()和predict_proba()函数会得到不同的结果,并提供正确的计算方法。通过示例代码和原理分析,帮助读者理解随机森林AUC计算的内部机制,避免常见错误。

在使用Scikit-learn的随机森林模型进行二分类任务时,计算AUC是评估模型性能的重要指标。然而,初学者经常会遇到一个问题:使用roc_auc_score函数,分别基于predict()和predict_proba()的输出来计算AUC,得到的结果往往不同。这背后的原因涉及到随机森林的输出机制以及AUC的计算方式。

随机森林的输出

随机森林是一种集成学习方法,它通过构建多个决策树并对其结果进行平均来做出预测。对于二分类问题,随机森林主要提供两种类型的输出:

  • predict(X): 返回的是对每个样本的类别预测,即0或1。这是通过对每棵树的预测结果进行投票,选择得票最多的类别作为最终预测结果。
  • predict_proba(X): 返回的是每个样本属于每个类别的概率。对于二分类问题,它会返回一个二维数组,其中每一行对应一个样本,第一列是属于类别0的概率,第二列是属于类别1的概率。

AUC的计算原理

AUC是ROC曲线下的面积,ROC曲线描述了在不同阈值下,真正例率(True Positive Rate, TPR)与假正例率(False Positive Rate, FPR)之间的关系。AUC值越高,模型的区分能力越强。

roc_auc_score函数需要输入的是样本的真实标签和模型预测的置信度得分。这个置信度得分可以是概率值,也可以是其他能够反映模型对样本属于某个类别的置信程度的值。

为什么predict()和predict_proba()计算的AUC不同?

使用predict()计算的AUC较低,是因为predict()返回的是硬类别预测,即0或1。这种硬预测丢失了模型预测的置信度信息。roc_auc_score函数在计算AUC时,需要的是一个连续的置信度得分,而不是离散的类别标签。当输入是predict()的输出时,roc_auc_score实际上是在计算基于硬类别预测的AUC,这通常会低估模型的真实性能。

MedPeer科研绘图
MedPeer科研绘图

生物医学领域的专业绘图解决方案,告别复杂绘图,专注科研创新

下载

使用predict_proba()计算的AUC更高,更接近模型的真实性能,是因为predict_proba()返回的是每个样本属于每个类别的概率。这个概率值可以作为置信度得分,roc_auc_score函数可以基于这些概率值来计算ROC曲线和AUC,从而更准确地评估模型的性能。

正确的计算方法

要正确计算随机森林模型的AUC,应该使用predict_proba()函数,并选择属于正类(通常是类别1)的概率作为置信度得分。

以下是正确的示例代码:

import matplotlib.pyplot as plt
from sklearn.datasets import load_wine
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import RocCurveDisplay, roc_auc_score
from sklearn.model_selection import train_test_split

# 加载数据集
X, y = load_wine(return_X_y=True)
y = y == 2

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)

# 创建随机森林模型
rfc = RandomForestClassifier(n_estimators=10, random_state=42)
rfc.fit(X_train, y_train)

# 使用predict_proba计算AUC
auc = roc_auc_score(y_test, rfc.predict_proba(X_test)[:, 1])
print(f"AUC using predict_proba: {auc}")

# 使用RocCurveDisplay可视化ROC曲线
ax = plt.gca()
rfc_disp = RocCurveDisplay.from_estimator(rfc, X_test, y_test, ax=ax, alpha=0.8)
print(f"AUC using RocCurveDisplay: {rfc_disp.roc_auc}")

plt.show()

代码解释:

  1. 导入必要的库。
  2. 加载数据集,并将目标变量转换为二分类问题。
  3. 划分训练集和测试集。
  4. 创建并训练随机森林模型。
  5. 使用rfc.predict_proba(X_test)[:, 1]获取测试集中每个样本属于类别1的概率。
  6. 使用roc_auc_score函数计算AUC,其中第一个参数是真实标签y_test,第二个参数是概率值。
  7. 使用RocCurveDisplay可视化ROC曲线,并打印AUC值。

注意事项

  • 确保使用predict_proba()函数,而不是predict()函数。
  • 对于二分类问题,需要选择predict_proba()返回的概率数组中的一列,通常是属于正类的概率(索引为1)。
  • roc_auc_score函数的第一个参数是真实标签,第二个参数是模型预测的置信度得分(概率值)。

总结

理解随机森林的输出机制以及AUC的计算原理,是正确评估模型性能的关键。在使用Scikit-learn计算随机森林模型的AUC时,务必使用predict_proba()函数,并选择属于正类的概率作为置信度得分。 这样才能得到准确的AUC值,从而更好地评估模型的性能。错误地使用predict()会低估模型的真实性能。 通过本文的讲解和示例代码,相信读者能够避免常见的错误,并正确地计算随机森林模型的AUC。

相关专题

更多
Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

9

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

3

2026.01.21

无人机驾驶证报考 uom民用无人机综合管理平台官网
无人机驾驶证报考 uom民用无人机综合管理平台官网

无人机驾驶证(CAAC执照)报考需年满16周岁,初中以上学历,身体健康(矫正视力1.0以上,无严重疾病),且无犯罪记录。个人需通过民航局授权的训练机构报名,经理论(法规、原理)、模拟飞行、实操(GPS/姿态模式)及地面站训练后考试合格,通常15-25天拿证。

15

2026.01.21

Python多线程合集
Python多线程合集

本专题整合了Python多线程相关教程,阅读专题下面的文章了解更多详细内容。

1

2026.01.21

java多线程相关教程合集
java多线程相关教程合集

本专题整合了java多线程相关教程,阅读专题下面的文章了解更多详细内容。

3

2026.01.21

windows激活码分享 windows一键激活教程指南
windows激活码分享 windows一键激活教程指南

Windows 10/11一键激活可以通过PowerShell脚本或KMS工具实现永久或长期激活。最推荐的简便方法是打开PowerShell(管理员),运行 irm https://get.activated.win | iex 脚本,按提示选择数字激活(选项1)。其他方法包括使用HEU KMS Activator工具进行智能激活。

2

2026.01.21

excel表格操作技巧大全 表格制作excel教程
excel表格操作技巧大全 表格制作excel教程

Excel表格操作的核心技巧在于 熟练使用快捷键、数据处理函数及视图工具,如Ctrl+C/V(复制粘贴)、Alt+=(自动求和)、条件格式、数据验证及数据透视表。掌握这些可大幅提升数据分析与办公效率,实现快速录入、查找、筛选和汇总。

6

2026.01.21

毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm
毒蘑菇显卡测试网站入口 毒蘑菇测试官网volumeshader_bm

毒蘑菇VOLUMESHADER_BM测试网站网址为https://toolwa.com/vsbm/,该平台基于WebGL技术通过渲染高复杂度三维分形图形评估设备图形处理能力,用户可通过拖动彩色物体观察画面流畅度判断GPU与CPU协同性能;测试兼容多种设备,但中低端手机易卡顿或崩溃,高端机型可能因发热降频影响表现,桌面端需启用独立显卡并使用支持WebGL的主流浏览器以确保准确结果

17

2026.01.21

github中文官网入口 github中文版官网网页进入
github中文官网入口 github中文版官网网页进入

github中文官网入口https://docs.github.com/zh/get-started,GitHub 是一种基于云的平台,可在其中存储、共享并与他人一起编写代码。 通过将代码存储在GitHub 上的“存储库”中,你可以: “展示或共享”你的工作。 持续“跟踪和管理”对代码的更改。

7

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
10分钟--Midjourney创作自己的漫画
10分钟--Midjourney创作自己的漫画

共1课时 | 0.1万人学习

Midjourney 关键词系列整合
Midjourney 关键词系列整合

共13课时 | 0.9万人学习

AI绘画教程
AI绘画教程

共2课时 | 0.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号