
本文介绍了如何使用 Pandas 在 DataFrame 分组后,针对每个分组的行应用自定义函数计算特定值。重点在于利用 groupby() 和 transform() 方法,结合条件判断,实现对满足特定条件的分组进行计算,并将结果广播回原始 DataFrame。通过本文,你将掌握一种高效处理分组数据的技巧,并能灵活应用于各种数据分析场景。
Pandas 提供了强大的分组(Grouping)功能,允许你根据一列或多列的值将 DataFrame 拆分成多个组。在许多数据分析场景中,我们需要在每个组内进行计算,并将结果应用回原始 DataFrame 的每一行。本文将详细介绍如何使用 Pandas 的 groupby() 和 transform() 方法,结合条件判断,实现按行应用自定义函数计算特定值。
groupby() 方法用于将 DataFrame 按照指定的列进行分组。transform() 方法则允许你对每个分组应用一个函数,并将结果广播回原始 DataFrame。这与 agg() 方法不同,agg() 方法会返回聚合后的结果,而 transform() 方法会返回与原始 DataFrame 相同大小的结果。
以下是一个示例,演示如何使用 groupby() 和 transform() 计算每个 ID 和年份组合的平均回报率和中位数回报率,并将结果乘以 12。
import pandas as pd
import numpy as np
# 创建示例 DataFrame
df = pd.DataFrame(
{"CALDT": ["1980-01-31", "1980-02-28", "1980-03-31",
"1980-01-31", "1980-02-28", "1980-03-31",
"1980-01-31"],
"ID": [1, 1, 1,
2, 2, 2,
3],
"Return": [0.02, 0.05, 0.10,
0.05, -0.02, 0.03,
-0.03]
})
df['CALDT'] = pd.to_datetime(df['CALDT'])
# 按照 ID 和年份进行分组
g = df.groupby(["ID", df.CALDT.dt.year])
# 计算平均回报率和中位数回报率,并乘以 12
return_stats = pd.DataFrame({
"Mean_Return": g["Return"].transform("mean").mul(12),
"Median_Return": g["Return"].transform("median").mul(12)
}).where(g["CALDT"].transform("nunique").ge(2))
# 将计算结果与原始 DataFrame 合并
df = df.join(return_stats)
print(df)代码解释:
本文介绍了如何使用 Pandas 的 groupby() 和 transform() 方法,结合条件判断,实现按行应用自定义函数计算特定值。这种方法可以高效地处理分组数据,并能灵活应用于各种数据分析场景。通过掌握这种技巧,你可以更轻松地进行复杂的数据处理和分析。
以上就是Pandas DataFrame 分组计算:按行应用自定义函数的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号