使用 Pandas GroupBy 计算每行值:基于条件应用唯一函数

聖光之護
发布: 2025-08-25 12:06:37
原创
678人浏览过

使用 pandas groupby 计算每行值:基于条件应用唯一函数

本文旨在解决 Pandas DataFrame 分组后,根据组内数据计算特定统计量(如均值和中位数),并将结果应用回原始DataFrame的每行数据的问题。我们将演示如何使用 groupby()、transform() 和 where() 函数,结合条件判断,高效地实现这一目标,并生成新的包含计算结果的列。

在数据分析中,经常需要对DataFrame进行分组,并对每个组应用特定的函数。一个常见的需求是,根据分组后的数据计算统计量,并将这些统计量作为新的列添加回原始DataFrame。例如,我们可能需要计算每个用户的平均消费金额,并将该平均值添加到每个用户的消费记录中。如果还需要根据组的大小应用不同的计算逻辑,情况会变得更加复杂。本文将介绍如何使用 Pandas 的 groupby()、transform() 和 where() 函数来解决这类问题。

准备数据

首先,我们创建一个示例DataFrame,模拟包含日期、ID和收益率的数据:

import pandas as pd
import numpy as np

df = pd.DataFrame(
    {"CALDT": ["1980-01-31", "1980-02-28", "1980-03-31",
               "1980-01-31", "1980-02-28", "1980-03-31",
               "1980-01-31"],
     "ID": [1, 1, 1,
            2, 2, 2,
            3],
     "Return": [0.02, 0.05, 0.10,
                0.05, -0.02, 0.03,
                -0.03]
     })

df['CALDT'] = pd.to_datetime(df['CALDT'])
df['Year'] = df['CALDT'].dt.year

print(df)
登录后复制

这段代码创建了一个包含日期 (CALDT)、ID (ID) 和收益率 (Return) 的 DataFrame。 CALDT 列转换为 datetime 类型,并添加了年份 (Year) 列。

分组并计算统计量

接下来,我们使用 groupby() 函数按照 "ID" 和 "Year" 进行分组。然后,我们使用 transform() 函数计算每个组的平均收益率和中位数收益率,并将结果乘以 12。transform() 函数会将计算结果广播回原始 DataFrame,保持索引不变。

g = df.groupby(["ID", df.CALDT.dt.year])
return_stats = pd.DataFrame({
                     "Mean_Return": g["Return"].transform("mean").mul(12),
                     "Median_Return": g["Return"].transform("median").mul(12)
                  }).where(g["CALDT"].transform("nunique").ge(2))

df = df.join(return_stats)

print(df)
登录后复制

这里,g["Return"].transform("mean").mul(12) 计算了每个组的平均收益率,并乘以 12。 g["Return"].transform("median").mul(12) 计算了每个组的中位数收益率,并乘以 12。.where(g["CALDT"].transform("nunique").ge(2)) 用于筛选组内 "CALDT" 的唯一值数量大于等于 2 的组,不满足条件的组的 "Mean_Return" 和 "Median_Return" 列将被赋值为 NaN。

AppMall应用商店
AppMall应用商店

AI应用商店,提供即时交付、按需付费的人工智能应用服务

AppMall应用商店 56
查看详情 AppMall应用商店

结果

最终,我们将计算得到的 "Mean_Return" 和 "Median_Return" 列添加到原始 DataFrame 中。

       CALDT  ID  Return  Year  Mean_Return  Median_Return
0 1980-01-31   1    0.02  1980         0.68           0.60
1 1980-02-28   1    0.05  1980         0.68           0.60
2 1980-03-31   1    0.10  1980         0.68           0.60
3 1980-01-31   2    0.05  1980         0.24           0.36
4 1980-02-28   2   -0.02  1980         0.24           0.36
5 1980-03-31   2    0.03  1980         0.24           0.36
6 1980-01-31   3   -0.03  1980          NaN            NaN
登录后复制

总结

本文介绍了如何使用 Pandas 的 groupby()、transform() 和 where() 函数,结合条件判断,高效地对 DataFrame 进行分组计算,并将结果应用回原始 DataFrame。这种方法可以灵活地处理各种分组计算需求,并生成包含计算结果的新列。

注意事项:

  • transform() 函数的返回值必须与原始 DataFrame 的索引保持一致。
  • where() 函数可以根据条件筛选组,并将不满足条件的组的计算结果设置为 NaN。
  • 在实际应用中,可以根据具体需求调整分组的依据和计算的统计量。

通过掌握这些技巧,可以更加高效地进行数据分析,并从数据中提取有价值的信息。

以上就是使用 Pandas GroupBy 计算每行值:基于条件应用唯一函数的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
热门推荐
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号