首页 > 后端开发 > C++ > 正文

C++STL容器resize和reserve使用方法

P粉602998670
发布: 2025-09-13 11:46:01
原创
233人浏览过
resize改变容器中元素的数量,涉及构造或销毁;reserve仅预分配内存,不改变元素数量,用于优化性能避免频繁重分配。

c++stl容器resize和reserve使用方法

C++ STL容器中的

resize
登录后复制
reserve
登录后复制
方法,简单来说,一个关乎容器内元素的数量,另一个则专注于容器底层内存的容量预留。
resize
登录后复制
会改变容器的实际大小,可能涉及元素的构造或销毁;而
reserve
登录后复制
仅仅是预分配内存,不改变元素数量,也不触及元素的生命周期,它更多是为了优化性能,避免频繁的内存重新分配。

解决方案

理解

resize
登录后复制
reserve
登录后复制
的核心差异,是高效使用C++ STL容器的关键。它们虽然都与容器的“大小”有关,但操作的层面完全不同。

std::vector::reserve(size_type new_cap)
登录后复制

reserve
登录后复制
的职责是确保容器的内部容量(
capacity()
登录后复制
)至少能容纳
new_cap
登录后复制
个元素。它做的仅仅是内存预分配

立即学习C++免费学习笔记(深入)”;

  • 行为: 如果
    new_cap
    登录后复制
    大于当前的
    capacity()
    登录后复制
    ,容器会重新分配一块更大的内存,并将现有元素复制或移动到新位置,然后释放旧内存。如果
    new_cap
    登录后复制
    小于或等于当前的
    capacity()
    登录后复制
    reserve
    登录后复制
    通常不做任何事情(标准允许实现自由,但通常不会收缩容量)。
  • size()
    登录后复制
    capacity()
    登录后复制
    的影响:
    调用
    reserve
    登录后复制
    后,
    size()
    登录后复制
    不会改变,但
    capacity()
    登录后复制
    可能会增加。
  • 元素: 不涉及元素的构造、销毁或赋值。容器中的元素数量和它们的值都保持不变。
  • 目的: 主要用于性能优化。当你知道容器最终会包含大量元素时,提前调用
    reserve
    登录后复制
    可以避免在后续添加元素(如
    push_back
    登录后复制
    )时频繁地进行内存重新分配,因为内存重新分配是一个开销相对较大的操作。每次重新分配,所有现有元素都需要被移动,这在处理大数据时可能导致显著的性能瓶颈。

示例:

std::vector<int> vec;
std::cout << "初始: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: 初始: size=0, capacity=0 (或某个小值)

vec.reserve(10);
std::cout << "reserve(10)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: reserve(10)后: size=0, capacity=10 (或更大)

for (int i = 0; i < 5; ++i) {
    vec.push_back(i);
}
std::cout << "push_back 5个元素后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: push_back 5个元素后: size=5, capacity=10
登录后复制

std::vector::resize(size_type count)
登录后复制
std::vector::resize(size_type count, const T& value)
登录后复制

resize
登录后复制
的职责是改变容器中实际元素的数量
size()
登录后复制
)。

  • 行为:
    • 如果
      count
      登录后复制
      大于当前的
      size()
      登录后复制
      :容器会添加新的元素,直到
      size()
      登录后复制
      达到
      count
      登录后复制
      。新添加的元素会进行值初始化(如果提供了
      value
      登录后复制
      ,则用
      value
      登录后复制
      拷贝构造;否则进行默认构造)。这个过程可能伴随着内存重新分配,如果当前的
      capacity()
      登录后复制
      不足以容纳
      count
      登录后复制
      个元素。
    • 如果
      count
      登录后复制
      小于当前的
      size()
      登录后复制
      :容器会从末尾删除元素,直到
      size()
      登录后复制
      达到
      count
      登录后复制
      。被删除的元素会被销毁。
  • size()
    登录后复制
    capacity()
    登录后复制
    的影响:
    size()
    登录后复制
    会变为
    count
    登录后复制
    capacity()
    登录后复制
    可能会增加(如果需要容纳更多元素),但通常不会减少(除非调用
    shrink_to_fit()
    登录后复制
    )。
  • 元素: 涉及元素的构造、销毁或赋值。
  • 目的: 用于改变容器中实际存储的元素数量。当你需要一个容器精确地拥有特定数量的元素,并且希望这些新元素被初始化时,
    resize
    登录后复制
    是你的选择。

示例:

std::vector<int> vec;
vec.resize(5); // 容器现在有5个元素,都是默认初始化的0
std::cout << "resize(5)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: resize(5)后: size=5, capacity=5 (或更大)
for (int x : vec) {
    std::cout << x << " "; // 输出: 0 0 0 0 0
}
std::cout << std::endl;

vec.resize(3); // 容器现在有3个元素,最后两个被销毁
std::cout << "resize(3)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: resize(3)后: size=3, capacity=5 (或更大)
for (int x : vec) {
    std::cout << x << " "; // 输出: 0 0 0
}
std::cout << std::endl;

vec.resize(7, 99); // 容器现在有7个元素,新增的4个是99
std::cout << "resize(7, 99)后: size=" << vec.size() << ", capacity=" << vec.capacity() << std::endl;
// 输出: resize(7, 99)后: size=7, capacity=7 (或更大)
for (int x : vec) {
    std::cout << x << " "; // 输出: 0 0 0 99 99 99 99
}
std::cout << std::endl;
登录后复制

何时应优先使用
reserve
登录后复制
来优化容器的性能?

我个人经验里,

reserve
登录后复制
常常被低估,尤其是在处理大量数据,并且数据是逐步添加到容器中时。如果你预见到一个
std::vector
登录后复制
最终会容纳数百、数千甚至更多元素,并且你主要通过
push_back
登录后复制
emplace_back
登录后复制
来填充它,那么提前调用
reserve
登录后复制
几乎总是一个明智的选择。

想象一下,你有一个循环,需要向

std::vector
登录后复制
中添加10000个元素。如果没有
reserve
登录后复制
vector
登录后复制
capacity
登录后复制
会以指数增长的方式进行重新分配(例如,从0到1,再到2,再到4,8,16...)。每次重新分配,
vector
登录后复制
都需要:

  1. 分配一块更大的新内存。
  2. 将所有现有元素从旧内存复制或移动到新内存。
  3. 销毁旧内存中的元素。
  4. 释放旧内存。

这些操作,特别是复制/移动元素,开销非常大。对于10000个元素,你可能会经历十几次甚至更多的重新分配。每一次都意味着大量的数据移动。而一旦你调用了

vec.reserve(10000)
登录后复制
vector
登录后复制
会一次性分配好足够的内存。后续的10000次
push_back
登录后复制
操作,只要不超过这个容量,就不会触发任何内存重新分配,元素可以直接在预留好的空间中构造。这带来的性能提升,在实际项目中是非常显著的。

我通常会这样思考:如果你有一个函数,它的任务是收集数据并返回一个

vector
登录后复制
,而且你大概知道数据量的上限,那么在函数开始时就
reserve
登录后复制
一下,能让整个过程跑得更顺畅。当然,前提是你对数据量有个合理的预估,否则过度
reserve
登录后复制
也可能导致内存浪费。

AI图像编辑器
AI图像编辑器

使用文本提示编辑、变换和增强照片

AI图像编辑器 46
查看详情 AI图像编辑器

错误使用
resize
登录后复制
reserve
登录后复制
可能导致哪些内存问题和陷阱?

使用这两个函数,如果理解不深,确实会踩到一些坑。

reserve
登录后复制
的陷阱:

  1. 过度预留内存: 如果你
    reserve
    登录后复制
    了远超实际所需的容量,比如
    reserve(1000000)
    登录后复制
    ,但最终只
    push_back
    登录后复制
    了100个元素,那么你就会浪费大量的内存。这部分内存虽然没有被元素实际占用,但它被
    vector
    登录后复制
    “持有”了,其他地方就不能使用。在内存受限的环境下,这可能导致不必要的内存压力。虽然可以通过
    shrink_to_fit()
    登录后复制
    尝试回收多余容量,但这本身也是一个开销。
  2. 不改变
    size()
    登录后复制
    的误解:
    有些新手可能会误以为
    reserve(N)
    登录后复制
    之后,就可以直接通过
    vec[i]
    登录后复制
    来访问
    i < N
    登录后复制
    的元素。这是错误的!
    reserve
    登录后复制
    只改变
    capacity()
    登录后复制
    size()
    登录后复制
    仍然是0。尝试访问
    vec[0]
    登录后复制
    会导致未定义行为,因为容器中根本没有元素。正确的做法是在
    reserve
    登录后复制
    后使用
    push_back
    登录后复制
    emplace_back
    登录后复制
    来添加元素。

resize
登录后复制
的陷阱:

  1. 不必要的构造/销毁开销: 如果
    resize
    登录后复制
    的目标大小大于当前大小,新添加的元素会被默认构造(或拷贝构造)。如果你的元素类型是自定义的复杂对象,其构造函数可能涉及资源分配(如文件句柄、网络连接、其他内存分配等),那么
    resize
    登录后复制
    操作可能会产生巨大的性能开销。我见过不少新手在用
    resize
    登录后复制
    时,没考虑到自定义类型默认构造的开销,尤其是在循环中频繁
    resize
    登录后复制
    ,那性能下降得真是肉眼可见。
  2. 默认值问题:
    resize(count)
    登录后复制
    会用默认值初始化新元素。对于
    int
    登录后复制
    double
    登录后复制
    等基本类型,默认值通常是0。但对于自定义类型,你需要确保其默认构造函数是可用的,并且其行为符合你的预期。如果你期望一个特定的初始值,务必使用
    resize(count, value)
    登录后复制
  3. 意外的截断: 如果你
    resize
    登录后复制
    到一个小于当前
    size()
    登录后复制
    的值,那么超出部分的元素会被销毁。如果这些元素持有重要的资源,或者它们的销毁会触发副作用,你必须确保这是你想要的行为。例如,一个
    vector
    登录后复制
    存储了指向动态分配内存的智能指针,
    resize
    登录后复制
    可能会意外地释放这些资源。

总的来说,关键在于理解

size
登录后复制
capacity
登录后复制
这两个概念的根本区别,以及它们如何影响内存和元素的生命周期。

resize
登录后复制
reserve
登录后复制
可以一起使用吗?它们的最佳实践是什么?

是的,

resize
登录后复制
reserve
登录后复制
不仅可以一起使用,在某些场景下,它们组合起来能提供更精细的控制和更优的性能。这两种方法各自解决不同的问题,结合使用时,能兼顾内存预分配的效率和元素数量的精确控制。

组合使用的场景和最佳实践:

最常见的组合模式是:

reserve
登录后复制
预留内存,然后通过
push_back
登录后复制
(或
emplace_back
登录后复制
)填充元素,最后如果需要,再用
resize
登录后复制
调整最终的元素数量。

  1. 预知最大容量,逐步填充: 如果你知道容器可能达到的最大元素数量(或一个合理的上限),但实际填充的元素数量可能不确定,或者需要通过循环逐个添加,那么先

    reserve
    登录后复制
    是最佳选择。

    std::vector<MyObject> objects;
    objects.reserve(1000); // 预留1000个MyObject的内存空间
    
    // 假设通过某个循环或算法添加元素
    for (int i = 0; i < some_dynamic_count; ++i) {
        if (condition_met) {
            objects.push_back(MyObject(i)); // 高效添加,避免重新分配
        }
    }
    // 此时 objects.size() 可能小于等于 1000
    登录后复制

    这种模式下,

    reserve
    登录后复制
    保证了
    push_back
    登录后复制
    的高效性,而
    size()
    登录后复制
    则准确反映了实际添加的元素数量。

  2. 需要精确数量的占位符,并可能后续修改: 如果你需要一个容器,一开始就包含特定数量的元素(作为占位符),并且这些元素可能在后续被修改,那么直接使用

    resize
    登录后复制

    std::vector<int> scores;
    scores.resize(5, 0); // 创建一个包含5个0的vector,作为初始分数
    
    // 后续可以修改这些分数
    scores[0] = 95;
    scores[4] = 88;
    登录后复制

    这种情况下,

    resize
    登录后复制
    直接设定了容器的逻辑大小和初始内容。

  3. 预留容量并填充,然后截断或扩展: 这是一种更复杂的组合,它结合了前两者的优点。

    std::vector<double> data_points;
    data_points.reserve(200); // 预计最多有200个数据点
    
    // 收集数据,通过 push_back 添加
    for (int i = 0; i < 150; ++i) { // 假设实际只收集了150个
        data_points.push_back(static_cast<double>(i) * 1.5);
    }
    
    // 此时 data_points.size() 是 150,capacity 至少是 200。
    // 如果现在需要确保容器正好有 180 个元素,多余的用 0.0 填充
    data_points.resize(180, 0.0);
    // 现在 data_points.size() 是 180,capacity 至少是 200。
    // 如果需要减少到 100 个元素
    data_points.resize(100); // 后面的80个元素被销毁
    登录后复制

    我通常是这样用:如果我能大致估算出最终的元素数量,我会先

    reserve
    登录后复制
    一下。然后,如果我需要填充一个特定数量的占位符,或者要截断容器,我才会动用
    resize
    登录后复制
    。这是一种很务实的做法,兼顾了性能和逻辑清晰度。

总结最佳实践:

  • reserve
    登录后复制
    :当你主要通过
    push_back
    登录后复制
    emplace_back
    登录后复制
    向容器添加元素,并且能大致预估最终元素数量时,使用
    reserve
    登录后复制
    来避免频繁的内存重新分配,优化性能。
  • resize
    登录后复制
    :当你需要容器精确地包含特定数量的元素,并且希望这些元素被默认构造或拷贝构造为特定值时,使用
    resize
    登录后复制
    。它直接改变容器的逻辑大小。
  • 不要混淆:永远记住
    reserve
    登录后复制
    只影响
    capacity()
    登录后复制
    ,不影响
    size()
    登录后复制
    resize
    登录后复制
    则改变
    size()
    登录后复制
    ,并可能影响
    capacity()
    登录后复制

理解这两种操作的内在机制和应用场景,是写出高效、健出C++代码的基础。

以上就是C++STL容器resize和reserve使用方法的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号