
本文档旨在指导读者如何在 CPU 上使用 llama-cpp-python 库运行任何量化的 GGUF 格式的开源 LLM 模型,例如 Llama 3、Mistral 或 Zephyr 等,而无需依赖 ctransformers 库支持。 本教程涵盖了环境配置、模型下载、推理代码编写以及一些实用技巧,帮助读者快速上手并解决常见问题。
llama-cpp-python 是一个流行的 Python 库,它基于 llama.cpp,允许在 CPU 上运行量化的 LLM 模型。它易于使用,并且通常是第一个支持新型号量化版本的库之一。
首先,需要安装 llama-cpp-python 和 huggingface_hub。 llama-cpp-python 用于加载和运行模型,而 huggingface_hub 用于从 Hugging Face Model Hub 下载模型。
在终端中运行以下命令:
pip install llama-cpp-python pip install huggingface_hub
请注意,上述命令安装的是 CPU 版本的 llama-cpp-python。 如果您想使用 GPU 加速,则需要进行额外的配置,具体步骤不在本文档的讨论范围内。
使用 huggingface_hub 从 Hugging Face Model Hub 下载 GGUF 模型。以下代码示例演示了如何下载 Mixtral-8x7B-Instruct-v0.1 模型:
from huggingface_hub import hf_hub_download
model_name = "TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF"
model_file = "mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf"
model_path = hf_hub_download(model_name, filename=model_file)
print(f"Model downloaded to: {model_path}")这段代码将下载 mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf 文件到本地。 Q4_K_M 表示 4-bit 量化模型,您可以根据需要选择其他量化级别。
下载模型后,可以使用 llama-cpp-python 加载并运行模型。以下代码示例展示了如何加载模型并生成文本:
from llama_cpp import Llama
llm = Llama(
model_path=model_path,
n_ctx=16000, # Context length to use
n_threads=32, # Number of CPU threads to use
n_gpu_layers=0 # Number of model layers to offload to GPU
)
generation_kwargs = {
"max_tokens": 20000,
"stop": ["</s>"],
"echo": False, # Echo the prompt in the output
"top_k": 1 # This is essentially greedy decoding, since the model will always return the highest-probability token. Set this value > 1 for sampling decoding
}
prompt = "The meaning of life is "
res = llm(prompt, **generation_kwargs)
print(res["choices"][0]["text"])这段代码首先使用 Llama 类加载模型,并设置上下文长度 (n_ctx)、线程数 (n_threads) 和 GPU 层数 (n_gpu_layers)。 由于我们要在 CPU 上运行模型,因此将 n_gpu_layers 设置为 0。
然后,定义生成参数 generation_kwargs,例如最大 token 数 (max_tokens)、停止词 (stop)、是否回显提示 (echo) 和 top-k 值 (top_k)。
最后,使用 llm 对象运行推理,并将结果打印到控制台。
Mixtral-8x7B 是一个相对较大的模型,可能需要大量的内存才能运行。 如果您的计算机内存有限,可以尝试使用较小的模型,例如 Llama-2-13B 或 Mistral-7B。
以下是一些较小模型的示例:
本教程介绍了如何使用 llama-cpp-python 在 CPU 上运行量化的 GGUF 模型。 通过遵循这些步骤,您可以轻松地在本地运行各种开源 LLM 模型,并探索它们的强大功能。请记住,选择合适的模型和调整参数对于获得最佳性能至关重要。
以上就是在 CPU 上运行任何量化的 GGUF 模型进行本地推理的教程的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号