Python使用PCA降维并进行可视化分析的常见操作流程【技巧】

冰川箭仙
发布: 2025-12-21 11:37:02
原创
175人浏览过
PCA降维+可视化需三步:先标准化(Z-score,训练集fit后测试集transform),再选主成分(累计方差85%~95%或找拐点),最后可视化(2D/3D散点图+载荷分析解释物理意义)。

python使用pca降维并进行可视化分析的常见操作流程【技巧】

PCA降维+可视化不是一步到位的事,核心在于数据预处理、主成分选择和结果解读三步不能跳。

标准化是必须的前置步骤

原始数据各特征量纲不同,比如身高用厘米、收入用万元、年龄用岁,直接PCA会导致大数值特征主导主成分方向。必须先做Z-score标准化:

  • sklearn.preprocessing.StandardScaler拟合训练集并转换
  • 测试集也要用同一个scaler.transform,不能重新fit
  • 图像类或已归一化数据(如0–1像素值)可跳过,但需确认

用explained_variance_ratio判断保留几个主成分

降维不是越低越好,关键是保留足够信息。调用pca.explained_variance_ratio_查看每个主成分解释的方差占比:

  • 累计加总到85%~95%通常够用(视任务而定)
  • 画出“主成分序号 vs 累计方差贡献率”折线图,找拐点(elbow point)
  • 比如前2个成分累计贡献87%,那二维可视化就合理;若只到60%,就得考虑3D或检查数据质量

二维/三维散点图是最直观的可视化方式

将降维后的前两列(或前三列)作为x/y/z轴,按类别着色,能快速观察聚类趋势和离群点:

故事AI绘图神器
故事AI绘图神器

文本生成图文视频的AI工具,无需配音,无需剪辑,快速成片,角色固定。

故事AI绘图神器 77
查看详情 故事AI绘图神器

立即学习Python免费学习笔记(深入)”;

  • matplotlib.pyplot.scatterseaborn.scatterplot,hue参数传入标签列
  • 添加坐标轴标签,注明对应主成分及方差占比(如"PC1 (42.3%)")
  • 三维可用mpl_toolkits.mplot3d.Axes3D,但注意旋转交互更利于观察结构

别忘了看载荷(loadings)理解物理意义

主成分是原始特征的线性组合,载荷矩阵pca.components_告诉你每个原始变量对各主成分的贡献大小:

  • 取第一行(PC1)做条形图,看哪些原始特征权重绝对值最大
  • 正负号表示正相关或负相关,比如PC1中“收入”系数大且为正、“年龄”为负,说明PC1可能代表“年轻高收入”倾向
  • 这对后续特征工程或业务解释非常关键,不能只看散点图就下结论

基本上就这些。流程不复杂但容易忽略标准化和载荷分析,实际效果好坏往往取决于这两步是否到位。

以上就是Python使用PCA降维并进行可视化分析的常见操作流程【技巧】的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号