
在现代数据集成任务中,通过api获取数据是常见操作。当api返回的数据采用apache parquet这种高效的列式存储格式时,直接处理其二进制流需要特定的方法。parquet格式以其压缩率高、查询性能优越等特点,在数据湖和大数据分析领域广受欢迎。然而,初次尝试从api获取并解码parquet数据时,开发者常因对http响应内容类型的误解而遇到解码错误。本文将详细介绍如何正确地从api获取parquet数据,并利用python生态系统中的强大工具进行解析和处理。
在使用requests库发送HTTP请求时,response对象提供了多种访问响应内容的方式。其中,response.text和response.content是最常用的两种,但它们之间存在本质区别:
当API返回Parquet格式的数据时,它实际上是一个二进制文件流。如果错误地使用response.text来获取内容,requests库会尝试将其解码为字符串,这会导致乱码甚至解码失败,因为Parquet的二进制结构无法被解释为有效的文本字符。
错误示例(应避免):
import requests
def get_orders_data_incorrect(date):
url = "YOUR_API_BASE_URL/orders" # 替换为你的API地址
headers = {}
params = {"date": date}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
# 错误:Parquet是二进制数据,不应使用response.text
data = response.text.strip()
return data
else:
print(f"Failed to fetch orders data: {response.status_code}")
return None
# 假设orders_info是使用上述错误方法获取的乱码字符串
# parquet_data_str = orders_info
# buffer = io.BytesIO(parquet_data_str.encode()) # 此时encode会再次出错或生成无效字节流上述代码中,response.text会将Parquet二进制数据强行解码为字符串,导致后续的parquet_data_str.encode()操作无法生成有效的Parquet字节流,从而在pyarrow.parquet.read_table阶段抛出错误。
立即学习“Python免费学习笔记(深入)”;
要正确解析从API获取的Parquet数据,我们需要遵循以下步骤:
pandas库提供了read_parquet函数,它能够直接从文件路径、URL或类似文件对象(如io.BytesIO)中读取Parquet数据。这是最简洁高效的方法。
import requests
import io
import pandas as pd
import pyarrow.parquet as pq # 虽然这里直接用pandas,但pyarrow是其底层依赖
def get_orders_data_solution1(date: str) -> pd.DataFrame | None:
"""
从API获取订单数据并直接解析为Pandas DataFrame。
"""
url = "YOUR_API_BASE_URL/orders" # 替换为你的API地址
headers = {} # 根据需要添加认证或其他头部
params = {"date": date}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status() # 如果状态码不是200,则抛出HTTPError
# 核心:使用response.content获取原始二进制数据
# 并通过io.BytesIO封装,然后由pd.read_parquet直接读取
df = pd.read_parquet(io.BytesIO(response.content))
return df
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return None
except Exception as e:
print(f"数据解析失败: {e}")
return None
# 示例调用
date_to_fetch = "2023-12-08"
orders_df = get_orders_data_solution1(date_to_fetch)
if orders_df is not None:
print("成功获取并解析订单数据,前5行:")
print(orders_df.head())
print(f"DataFrame形状: {orders_df.shape}")
else:
print("未能获取或解析订单数据。")pyarrow是Apache Arrow项目的Python接口,提供了对Parquet格式的底层支持。pandas.read_parquet内部也依赖于pyarrow(或fastparquet)。此方案展示了更底层的解析过程,它先通过pyarrow.parquet.read_table创建Arrow Table对象,再将其转换为pandas.DataFrame。
import requests
import io
import pandas as pd
import pyarrow.parquet as pq
def get_orders_data_solution2(date: str) -> pd.DataFrame | None:
"""
从API获取订单数据,通过pyarrow解析,然后转换为Pandas DataFrame。
"""
url = "YOUR_API_BASE_URL/orders" # 替换为你的API地址
headers = {}
params = {"date": date}
try:
response = requests.get(url, headers=headers, params=params)
response.raise_for_status() # 如果状态码不是200,则抛出HTTPError
# 核心:使用response.content获取原始二进制数据
buffer = io.BytesIO(response.content)
# 通过pyarrow.parquet读取数据到Arrow Table
table = pq.read_table(buffer)
# 将Arrow Table转换为Pandas DataFrame
df = table.to_pandas()
return df
except requests.exceptions.RequestException as e:
print(f"请求失败: {e}")
return None
except Exception as e:
print(f"数据解析失败: {e}")
return None
# 示例调用
date_to_fetch = "2023-12-08"
orders_df_alt = get_orders_data_solution2(date_to_fetch)
if orders_df_alt is not None:
print("\n成功获取并解析订单数据(方案二),前5行:")
print(orders_df_alt.head())
print(f"DataFrame形状: {orders_df_alt.shape}")
else:
print("未能获取或解析订单数据(方案二)。")两种方案都能够正确处理从API获取的Parquet二进制数据。方案一更为简洁,推荐在大多数情况下使用。
在成功将Parquet数据解析为pandas.DataFrame后,如果需要将其保存到本地文件系统以便长期存储或后续处理,pandas也提供了便捷的方法。
# 假设 orders_df 是从API获取并解析后的DataFrame
if orders_df is not None:
output_filename = f"orders_{date_to_fetch}.parquet"
try:
orders_df.to_parquet(output_filename, index=False) # index=False表示不将DataFrame的索引写入Parquet文件
print(f"\nDataFrame已成功保存到 {output_filename}")
except Exception as e:
print(f"保存Parquet文件失败: {e}")to_parquet()方法同样依赖于pyarrow或fastparquet作为后端引擎。
从API获取并解析Parquet二进制数据是数据工程师和分析师的常见任务。关键在于正确识别API响应的二进制性质,并使用response.content获取原始字节流。结合io.BytesIO内存缓冲区以及pandas.read_parquet或pyarrow.parquet.read_table,可以高效、可靠地将Parquet数据转换为可用的pandas.DataFrame。掌握这些技术,将有助于你更顺畅地处理多样化的API数据源,为后续的数据分析和应用奠定坚实基础。
以上就是Python从API获取并解析Parquet数据实战指南的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号