0

0

Pandas 数据帧合并与基于值创建列的实用指南

心靈之曲

心靈之曲

发布时间:2025-10-15 11:11:01

|

675人浏览过

|

来源于php中文网

原创

pandas 数据帧合并与基于值创建列的实用指南

本文旨在提供一个清晰、简洁的指南,介绍如何使用 Pandas 合并两个数据帧,并基于特定列的值创建新的列。我们将通过一个具体的例子,演示如何将两个包含 ZIP 代码、区域和分段信息的数据帧合并,并根据分段类型生成新的区域列。

Pandas 库提供了强大的数据处理功能,其中数据帧的合并是常见的操作之一。本教程将重点介绍如何合并两个数据帧,并根据特定列的值创建新的列,以满足特定的数据分析需求。我们将以一个实际案例出发,讲解如何利用 merge() 函数实现这一目标。

数据准备

首先,我们需要准备两个数据帧 df_1 和 df_2,它们都包含 ZIP、TERRITORY 和 SEGMENT 列。df_1 包含 CR1 分段的数据,而 df_2 包含 CR2 分段的数据。

import pandas as pd

df_1 = pd.DataFrame({
    'ZIP': [93517, 31625, 89311],
    'TERRITORY': [1001, 1002, 1002],
    'SEGMENT': ['CR1', 'CR1', 'CR1']
})

df_2 = pd.DataFrame({
    'ZIP': [93517, 31625, 72844],
    'TERRITORY': [2001, 2002, 2003],
    'SEGMENT': ['CR2', 'CR2', 'CR2']
})

print("df_1:\n", df_1)
print("\ndf_2:\n", df_2)

数据帧合并与列创建

我们的目标是将这两个数据帧合并成一个新的数据帧 df_final,其中包含 ZIP 列,以及根据 SEGMENT 值创建的 CR1_TERRITORY 和 CR2_TERRITORY 列。

可以使用 Pandas 的 merge() 函数来实现这个目标。merge() 函数允许我们根据一个或多个公共列合并两个数据帧。在本例中,我们将使用 ZIP 列作为公共列,并使用 how='outer' 参数进行外连接,以保留两个数据帧中的所有行。suffix 参数用于区分两个数据帧中同名的列。

df_final = df_1.merge(df_2, how='outer', on='ZIP', suffixes=['_CR1', '_CR2'])
print("\nMerged df_final:\n", df_final)

处理缺失值

由于外连接会保留两个数据帧中的所有行,因此 df_final 中可能会出现缺失值(NaN)。我们需要将这些缺失值替换为 0。

医院网站系统
医院网站系统

HTML医院网站系统基于PHP+MYSQL开发,在文章内容网站的基础上,预设了医院概况、新闻动态、环境设备、名医荟萃、专科介绍、就医指南、专家门诊值班表、网上挂号、医疗保健知识、在线咨询等医院网站常用的栏目和测试数据,采用适合医院网站的专用模版,增强了系统的针对性和易用性。系统具有文章、图文、下载、社区、表单、用户等基本系统模块和一系列网站辅助功能,用户也可根据自身特点任意创建和修改栏目,适合创建

下载
df_final['TERRITORY_CR1'] = df_final['TERRITORY_CR1'].fillna(0)
df_final['TERRITORY_CR2'] = df_final['TERRITORY_CR2'].fillna(0)
print("\ndf_final with filled NaN:\n", df_final)

重命名列

为了使列名更清晰,我们可以重命名 TERRITORY_CR1 和 TERRITORY_CR2 列为 CR1_TERRITORY 和 CR2_TERRITORY。

df_final = df_final.rename(columns={'TERRITORY_CR1': 'CR1_TERRITORY', 'TERRITORY_CR2': 'CR2_TERRITORY'})
print("\ndf_final with renamed columns:\n", df_final)

选择需要的列

最后,我们只保留 ZIP、CR1_TERRITORY 和 CR2_TERRITORY 列。

df_final = df_final[['ZIP', 'CR1_TERRITORY', 'CR2_TERRITORY']]
print("\nFinal df_final:\n", df_final)

完整代码示例

import pandas as pd

df_1 = pd.DataFrame({
    'ZIP': [93517, 31625, 89311],
    'TERRITORY': [1001, 1002, 1002],
    'SEGMENT': ['CR1', 'CR1', 'CR1']
})

df_2 = pd.DataFrame({
    'ZIP': [93517, 31625, 72844],
    'TERRITORY': [2001, 2002, 2003],
    'SEGMENT': ['CR2', 'CR2', 'CR2']
})

df_final = df_1.merge(df_2, how='outer', on='ZIP', suffixes=['_CR1', '_CR2'])
df_final['CR1_TERRITORY'] = df_final['TERRITORY_CR1'].fillna(0)
df_final['CR2_TERRITORY'] = df_final['TERRITORY_CR2'].fillna(0)
df_final = df_final[['ZIP', 'CR1_TERRITORY', 'CR2_TERRITORY']]

print(df_final)

总结与注意事项

  • merge() 函数是 Pandas 中合并数据帧的强大工具
  • how 参数控制合并的方式,常用的有 inner、outer、left 和 right。
  • on 参数指定用于合并的公共列。
  • suffixes 参数用于区分两个数据帧中同名的列。
  • 在合并后,可能需要处理缺失值。
  • 根据实际需求,可以选择需要的列。

本教程提供了一个使用 Pandas 合并数据帧并基于值创建列的示例。通过理解 merge() 函数的用法和掌握数据处理的技巧,可以灵活地应对各种数据分析任务。希望本教程能够帮助你更好地使用 Pandas 进行数据处理。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

53

2025.12.04

数据分析的方法
数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。php中文网为大家带来了数据分析的相关知识、以及相关文章等内容。

469

2023.07.04

数据分析方法有哪几种
数据分析方法有哪几种

数据分析方法有:1、描述性统计分析;2、探索性数据分析;3、假设检验;4、回归分析;5、聚类分析。本专题为大家提供数据分析方法的相关的文章、下载、课程内容,供大家免费下载体验。

279

2023.08.07

网站建设功能有哪些
网站建设功能有哪些

网站建设功能包括信息发布、内容管理、用户管理、搜索引擎优化、网站安全、数据分析、网站推广、响应式设计、社交媒体整合和电子商务等功能。这些功能可以帮助网站管理员创建一个具有吸引力、可用性和商业价值的网站,实现网站的目标。

732

2023.10.16

数据分析网站推荐
数据分析网站推荐

数据分析网站推荐:1、商业数据分析论坛;2、人大经济论坛-计量经济学与统计区;3、中国统计论坛;4、数据挖掘学习交流论坛;5、数据分析论坛;6、网站数据分析;7、数据分析;8、数据挖掘研究院;9、S-PLUS、R统计论坛。想了解更多数据分析的相关内容,可以阅读本专题下面的文章。

508

2024.03.13

Python 数据分析处理
Python 数据分析处理

本专题聚焦 Python 在数据分析领域的应用,系统讲解 Pandas、NumPy 的数据清洗、处理、分析与统计方法,并结合数据可视化、销售分析、科研数据处理等实战案例,帮助学员掌握使用 Python 高效进行数据分析与决策支持的核心技能。

72

2025.09.08

Python 数据分析与可视化
Python 数据分析与可视化

本专题聚焦 Python 在数据分析与可视化领域的核心应用,系统讲解数据清洗、数据统计、Pandas 数据操作、NumPy 数组处理、Matplotlib 与 Seaborn 可视化技巧等内容。通过实战案例(如销售数据分析、用户行为可视化、趋势图与热力图绘制),帮助学习者掌握 从原始数据到可视化报告的完整分析能力。

55

2025.10.14

Java编译相关教程合集
Java编译相关教程合集

本专题整合了Java编译相关教程,阅读专题下面的文章了解更多详细内容。

9

2026.01.21

C++多线程相关合集
C++多线程相关合集

本专题整合了C++多线程相关教程,阅读专题下面的的文章了解更多详细内容。

3

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
React 教程
React 教程

共58课时 | 3.9万人学习

Pandas 教程
Pandas 教程

共15课时 | 0.9万人学习

ASP 教程
ASP 教程

共34课时 | 3.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号