
本教程详细阐述了如何利用pandas库,在分组数据中高效地根据日期条件填充“截止日期”列。通过结合`groupby.ffill()`实现组内向前填充缺失值,并利用`series.where()`进行条件筛选,确保只有当当前日期小于或等于填充的截止日期时,数据才会被更新,从而精确满足复杂的数据填充需求。
在数据分析和处理中,尤其是在涉及时间序列或事件管理的数据集中,我们经常需要对缺失值进行填充。然而,简单的向前或向后填充往往不能满足所有业务逻辑。一个常见的场景是,在一个按特定实体(例如“客户-设备”)分组的数据集中,我们希望填充“截止日期”列的缺失值。但这种填充并非无条件的,它必须遵循一个重要的约束:只有当当前行的“日期”小于或等于被填充的“截止日期”时,该填充才有效。这意味着,一旦“日期”超出了有效的“截止日期”范围,填充就应该停止,或者该值应该保持为NaN。
例如,考虑以下数据结构:
| Customer-Equipment | Date | Closing Date |
|---|---|---|
| Customer1 - Eq A | 2023-01-01 | 2023-01-05 |
| Customer1 - Eq A | 2023-01-02 | NaN |
| Customer1 - Eq A | 2023-01-03 | NaN |
| Customer1 - Eq A | 2023-01-04 | NaN |
| Customer1 - Eq A | 2023-01-05 | NaN |
| Customer1 - Eq A | 2023-01-06 | NaN |
| Customer2 - Eq H | 2023-01-01 | 2023-01-02 |
| Customer2 - Eq H | 2023-01-02 | NaN |
| Customer2 - Eq H | 2023-01-03 | NaN |
我们的目标是将Customer1 - Equipment A的Closing Date从2023-01-02到2023-01-05填充为2023-01-05,因为这些Date值都小于或等于2023-01-05。但2023-01-06的Date超出了2023-01-05,所以该行的Closing Date应保持为NaN。Customer2 - Equipment H也遵循相同的逻辑。
首先,我们创建一个示例DataFrame来模拟上述场景。确保日期列被正确解析为datetime类型,以便进行日期比较。
import pandas as pd
import numpy as np
# 创建示例数据
data = {
'Customer-Equipment': [
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer2 - Equipment H', 'Customer2 - Equipment H', 'Customer2 - Equipment H'
],
'Date': [
'2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06',
'2023-01-01', '2023-01-02', '2023-01-03'
],
'Closing Date': [
'2023-01-05', np.nan, np.nan, np.nan, np.nan, np.nan,
'2023-01-02', np.nan, np.nan
]
}
df = pd.DataFrame(data)
# 将日期列转换为datetime类型
df['Date'] = pd.to_datetime(df['Date'])
df['Closing Date'] = pd.to_datetime(df['Closing Date'])
print("原始DataFrame:")
print(df)原始DataFrame:
Customer-Equipment Date Closing Date 0 Customer1 - Equipment A 2023-01-01 2023-01-05 1 Customer1 - Equipment A 2023-01-02 NaT 2 Customer1 - Equipment A 2023-01-03 NaT 3 Customer1 - Equipment A 2023-01-04 NaT 4 Customer1 - Equipment A 2023-01-05 NaT 5 Customer1 - Equipment A 2023-01-06 NaT 6 Customer2 - Equipment H 2023-01-01 2023-01-02 7 Customer2 - Equipment H 2023-01-02 NaT 8 Customer2 - Equipment H 2023-01-03 NaT
解决此问题的关键在于两个Pandas函数的巧妙结合:groupby.ffill()(组内向前填充)和 Series.where()(条件筛选)。
首先,我们需要在每个Customer-Equipment组内,将Closing Date列的有效值向前传播,以填充其后的NaN值。这可以通过groupby()结合ffill()方法实现。
# 对'Closing Date'列进行组内向前填充
s_ffilled = df.groupby('Customer-Equipment')['Closing Date'].ffill()
print("\n经过ffill()填充后的Series:")
print(s_ffilled)经过ffill()填充后的Series:
0 2023-01-05 1 2023-01-05 2 2023-01-05 3 2023-01-05 4 2023-01-05 5 2023-01-05 6 2023-01-02 7 2023-01-02 8 2023-01-02 Name: Closing Date, dtype: datetime64[ns]
此时,s_ffilled包含了所有潜在的填充值,但尚未考虑“日期”与“截止日期”的条件。例如,Customer1 - Equipment A的2023-01-06行也被填充为2023-01-05,这与我们的需求不符。
接下来,我们需要应用条件:只有当Date列的值小于或等于填充后的Closing Date时,才保留填充值;否则,将其设置回NaN。Series.where()方法非常适合这种场景。它接受一个布尔条件,如果条件为True,则保留原值;如果条件为False,则替换为NaN(默认行为)或指定值。
在这里,我们的“原值”是s_ffilled,而“条件”是s_ffilled.ge(df['Date']),即判断填充后的Closing Date是否大于或等于当前行的Date。
# 应用条件筛选:只有当填充的截止日期 >= 当前日期时才保留 df['Closing Date'] = s_ffilled.where(s_ffilled.ge(df['Date']))
将上述两个步骤整合到一起,形成完整的解决方案:
import pandas as pd
import numpy as np
# 1. 创建示例数据
data = {
'Customer-Equipment': [
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer1 - Equipment A', 'Customer1 - Equipment A', 'Customer1 - Equipment A',
'Customer2 - Equipment H', 'Customer2 - Equipment H', 'Customer2 - Equipment H'
],
'Date': [
'2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06',
'2023-01-01', '2023-01-02', '2023-01-03'
],
'Closing Date': [
'2023-01-05', np.nan, np.nan, np.nan, np.nan, np.nan,
'2023-01-02', np.nan, np.nan
]
}
df = pd.DataFrame(data)
# 将日期列转换为datetime类型
df['Date'] = pd.to_datetime(df['Date'])
df['Closing Date'] = pd.to_datetime(df['Closing Date'])
print("原始DataFrame:")
print(df)
# 2. 解决方案
# 步骤1: 对'Closing Date'列进行组内向前填充
s_ffilled = df.groupby('Customer-Equipment')['Closing Date'].ffill()
# 步骤2: 应用条件筛选,只有当填充的截止日期 >= 当前日期时才保留
df['Closing Date'] = s_ffilled.where(s_ffilled.ge(df['Date']))
print("\n处理后的DataFrame:")
print(df)运行上述代码后,我们将得到如下结果:
原始DataFrame:
Customer-Equipment Date Closing Date
0 Customer1 - Equipment A 2023-01-01 2023-01-05
1 Customer1 - Equipment A 2023-01-02 NaT
2 Customer1 - Equipment A 2023-01-03 NaT
3 Customer1 - Equipment A 2023-01-04 NaT
4 Customer1 - Equipment A 2023-01-05 NaT
5 Customer1 - Equipment A 2023-01-06 NaT
6 Customer2 - Equipment H 2023-01-01 2023-01-02
7 Customer2 - Equipment H 2023-01-02 NaT
8 Customer2 - Equipment H 2023-01-03 NaT
处理后的DataFrame:
Customer-Equipment Date Closing Date
0 Customer1 - Equipment A 2023-01-01 2023-01-05
1 Customer1 - Equipment A 2023-01-02 2023-01-05
2 Customer1 - Equipment A 2023-01-03 2023-01-05
3 Customer1 - Equipment A 2023-01-04 2023-01-05
4 Customer1 - Equipment A 2023-01-05 2023-01-05
5 Customer1 - Equipment A 2023-01-06 NaT
6 Customer2 - Equipment H 2023-01-01 2023-01-02
7 Customer2 - Equipment H 2023-01-02 2023-01-02
8 Customer2 - Equipment H 2023-01-03 NaT可以看到,Customer1 - Equipment A组中,从2023-01-01到2023-01-05的Closing Date都被正确填充为2023-01-05,因为这些日期都小于或等于2023-01-05。而2023-01-06的Date超出了2023-01-05,因此其Closing Date保持为NaT(Pandas中的NaN日期类型)。Customer2 - Equipment H组也得到了同样正确的处理。
本教程展示了一种高效且Pandas风格的方法,用于在分组数据中根据日期条件填充缺失值。通过结合groupby.ffill()进行组内向前填充和Series.where()进行条件过滤,我们能够精确地控制填充逻辑,满足复杂的业务需求。这种方法不仅代码简洁,而且在处理大型数据集时通常具有良好的性能,是Pandas数据处理工具箱中的一个强大组合。
以上就是使用Pandas在分组数据中按条件填充“截止日期”的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号