0

0

使用 Polars 将字符串列转换为整数列:高效处理 BED12 格式数据

霞舞

霞舞

发布时间:2025-10-18 13:06:12

|

858人浏览过

|

来源于php中文网

原创

使用 polars 将字符串列转换为整数列:高效处理 bed12 格式数据

本文旨在提供一个清晰、高效的解决方案,将 Polars DataFrame 中包含逗号分隔整数的字符串列转换为多个整数列。我们将探讨多种方法,包括使用 `.str.strip_chars()`, `.cast()`, `.list.to_struct()` 以及 `unpivot` 和 `pivot` 操作,并提供示例代码和详细解释,帮助你轻松处理 BED12 格式或其他类似的数据转换需求。

在使用 Polars 处理数据时,经常会遇到需要将包含逗号分隔值的字符串列转换为数值列的情况。例如,在处理 BED12 格式的数据时,blockSizes 和 blockStarts 列通常以字符串形式存储,其中包含逗号分隔的整数。本教程将介绍几种使用 Polars 将这些字符串列转换为整数列的有效方法。

方法一:使用 str.strip_chars(), cast(), 和 list.to_struct()

这种方法的核心思想是首先去除字符串末尾的逗号,然后将字符串分割成列表,接着将列表转换为结构体,最后解包结构体。

import polars as pl

df = pl.DataFrame(
    {
        "chrom": ["1", "1", "2", "X"],
        "blockSizes": ["10,29,", "20,22,", "30,25,", "40,23,"],
        "blockStarts": ["0,50,", "0,45,", "0,60,", "0,70,"]
    })

cols = "blockSizes", "blockStarts"

df = df.with_columns(
    pl.col(col)
      .str.strip_chars(",")
      .str.split(",")
      .cast(pl.List(pl.Int32))
      .list.to_struct(
         n_field_strategy = "max_width", 
         fields = lambda idx, col=col: f"{col}_{idx}"
      )
    for col in cols
 ).unnest(cols)

print(df)

代码解释:

千面数字人
千面数字人

千面 Avatar 系列:音频转换让静图随声动起来,动作模仿让动漫复刻真人动作,操作简单,满足多元创意需求。

下载
  1. pl.col(col).str.strip_chars(","): 移除列中字符串末尾的逗号。
  2. .str.split(","): 将字符串按逗号分割成字符串列表。
  3. .cast(pl.List(pl.Int32)): 将字符串列表转换为整数列表。这是关键一步,直接将整个列表转换为整数类型。
  4. .list.to_struct(n_field_strategy = "max_width", fields = lambda idx, col=col: f"{col}_{idx}"): 将列表转换为结构体,并动态地为结构体字段命名。n_field_strategy = "max_width" 确保结构体包含所有列表元素,fields 参数允许我们自定义字段名称,这里使用了 lambda 函数,将字段名称设置为 col_idx 的形式,例如 blockSizes_0 和 blockSizes_1。
  5. .unnest(cols): 解包结构体,将结构体的字段展开为单独的列。

优点:

  • 代码简洁,可读性强。
  • 使用 cast 方法一次性将整个列表转换为整数类型,效率较高。
  • 动态命名结构体字段,方便后续处理。

注意事项:

  • 确保字符串列中的值都是有效的整数,否则 cast 操作会失败。
  • n_field_strategy = "max_width" 确保处理长度不一致的列表时不会丢失数据。

方法二:使用函数封装

为了提高代码的可重用性,可以将上述逻辑封装成一个函数。

import polars as pl

def csv_to_struct(col):
    expr = pl.col(col).str.strip_chars(",").str.split(",")
    expr = expr.cast(pl.List(pl.Int32))
    return expr.list.to_struct(
        n_field_strategy = "max_width", 
        fields = lambda idx: f"{col}_{idx}"
    )

cols = "blockSizes", "blockStarts"

df = pl.DataFrame(
    {
        "chrom": ["1", "1", "2", "X"],
        "blockSizes": ["10,29,", "20,22,", "30,25,", "40,23,"],
        "blockStarts": ["0,50,", "0,45,", "0,60,", "0,70,"]
    })

df = df.with_columns(map(csv_to_struct, cols)).unnest(cols)

print(df)

代码解释:

  • csv_to_struct(col) 函数接收列名作为参数,并返回一个 Polars 表达式,该表达式执行字符串处理和类型转换操作。
  • df.with_columns(map(csv_to_struct, cols)) 将 csv_to_struct 函数应用于 cols 列表中的每个列名,并将结果添加到 DataFrame 中。

优点:

  • 代码更加模块化,易于维护和扩展。
  • 可以方便地应用于多个 DataFrame。

方法三:使用 unpivot 和 pivot

这种方法通过将数据进行长宽表转换来实现列的转换。

import polars as pl

cols = "blockSizes", "blockStarts"

df = pl.DataFrame(
    {
        "chrom": ["1", "1", "2", "X"],
        "blockSizes": ["10,29,", "20,22,", "30,25,", "40,23,"],
        "blockStarts": ["0,50,", "0,45,", "0,60,", "0,70,"]
    })

df = (df.with_row_index()
   .with_columns(
      pl.col(cols).str.strip_chars(",").str.split(",").cast(pl.List(pl.Int32))
   )
   .explode(cols)
   .unpivot(index=["index", "chrom"], variable_name="name")
   .with_columns(
      pl.format("{}_{}", 
         "name", 
         pl.col("index").cum_count().over("index", "name") - 1
      )
   )
   .pivot(on="name", index=["index", "chrom"]))

print(df)

代码解释:

  1. df.with_row_index(): 添加行索引,用于后续的 pivot 操作。
  2. pl.col(cols).str.strip_chars(",").str.split(",").cast(pl.List(pl.Int32)): 与前两种方法相同,去除逗号,分割字符串,并转换为整数列表。
  3. .explode(cols): 将列表展开为多行。
  4. .unpivot(index=["index", "chrom"], variable_name="name"): 将宽表转换为长表,将 blockSizes 和 blockStarts 列合并为 value 列,并添加 name 列表示原始列名。
  5. pl.format("{}_{}", "name", pl.col("index").cum_count().over("index", "name") - 1): 创建新的列名,例如 blockSizes_0 和 blockSizes_1。
  6. .pivot(on="name", index=["index", "chrom"]): 将长表转换回宽表,将 name 列的值作为列名,value 列的值作为对应的值。

优点:

  • 适用于需要更灵活地控制列转换过程的场景。

缺点:

  • 代码相对复杂,可读性较差。
  • 性能可能不如前两种方法。

总结

本教程介绍了三种使用 Polars 将包含逗号分隔整数的字符串列转换为整数列的方法。第一种方法使用 str.strip_chars(), cast(), 和 list.to_struct(),代码简洁高效,推荐使用。第二种方法将第一种方法封装成函数,提高了代码的可重用性。第三种方法使用 unpivot 和 pivot,适用于需要更灵活地控制列转换过程的场景。选择哪种方法取决于具体的应用场景和个人偏好。无论选择哪种方法,都需要确保字符串列中的值都是有效的整数,否则转换操作会失败。希望本教程能够帮助你更好地使用 Polars 处理数据。

相关专题

更多
format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

659

2023.07.31

python中的format是什么意思
python中的format是什么意思

python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

431

2024.06.27

js 字符串转数组
js 字符串转数组

js字符串转数组的方法:1、使用“split()”方法;2、使用“Array.from()”方法;3、使用for循环遍历;4、使用“Array.split()”方法。本专题为大家提供js字符串转数组的相关的文章、下载、课程内容,供大家免费下载体验。

258

2023.08.03

js截取字符串的方法
js截取字符串的方法

js截取字符串的方法有substring()方法、substr()方法、slice()方法、split()方法和slice()方法。本专题为大家提供字符串相关的文章、下载、课程内容,供大家免费下载体验。

212

2023.09.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1468

2023.10.24

字符串介绍
字符串介绍

字符串是一种数据类型,它可以是任何文本,包括字母、数字、符号等。字符串可以由不同的字符组成,例如空格、标点符号、数字等。在编程中,字符串通常用引号括起来,如单引号、双引号或反引号。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

621

2023.11.24

java读取文件转成字符串的方法
java读取文件转成字符串的方法

Java8引入了新的文件I/O API,使用java.nio.file.Files类读取文件内容更加方便。对于较旧版本的Java,可以使用java.io.FileReader和java.io.BufferedReader来读取文件。在这些方法中,你需要将文件路径替换为你的实际文件路径,并且可能需要处理可能的IOException异常。想了解更多java的相关内容,可以阅读本专题下面的文章。

551

2024.03.22

php中定义字符串的方式
php中定义字符串的方式

php中定义字符串的方式:单引号;双引号;heredoc语法等等。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

566

2024.04.29

html编辑相关教程合集
html编辑相关教程合集

本专题整合了html编辑相关教程合集,阅读专题下面的文章了解更多详细内容。

16

2026.01.21

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号