使用 LangChain 和 Flan-T5-Small 进行文档摘要和主题提取

霞舞
发布: 2025-10-25 11:46:49
原创
726人浏览过

使用 langchain 和 flan-t5-small 进行文档摘要和主题提取

本文档提供了一个使用 LangChain 框架和开源 LLM (例如 Flan-T5-Small) 处理大型文档(超过 512 个 tokens)进行摘要和主题提取的实践教程。重点介绍如何使用 LangChain 连接私有 LLM API,并展示了代码示例,演示了如何加载、分割文档,并使用 RetrievalQA 链进行信息检索和问答。

LangChain 提供了一套强大的工具,可以帮助开发者构建基于 LLM 的应用程序。当处理大型文档时,直接将整个文档输入 LLM 可能会超出其上下文窗口的限制。因此,需要将文档分割成更小的块,并使用适当的策略来提取信息。

处理大型文档

LangChain 提供了 load_and_split() 函数,可以用于加载和分割大型文档。这个函数接受一个文档加载器作为输入,并返回一个文档块的列表。例如,可以使用 PyPDFLoader 加载 PDF 文档,然后使用 CharacterTextSplitter 将文档分割成块。

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter

# 加载 PDF 文档
loader = PyPDFLoader("path/to/your/document.pdf")
documents = loader.load()

# 将文档分割成块
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

print(f"文档被分割成了 {len(texts)} 个块")
登录后复制

chunk_size 参数控制每个块的大小,chunk_overlap 参数控制块之间的重叠部分。适当的 chunk_size 和 chunk_overlap 可以提高信息检索的准确性。

使用 HuggingFaceEmbeddings 进行嵌入

为了更好地理解文档块的语义信息,需要将它们转换成向量嵌入。HuggingFaceEmbeddings 类可以用于从 Hugging Face 模型中心加载预训练的嵌入模型。

from langchain.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
登录后复制

model_name 参数指定要使用的嵌入模型的名称。sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 是一个常用的多语言嵌入模型。

使用 FAISS 构建向量数据库

向量数据库可以用于存储和检索文档嵌入。FAISS (Facebook AI Similarity Search) 是一个高效的向量数据库。

Fotor AI Image Upscaler
Fotor AI Image Upscaler

Fotor推出的AI图片放大工具

Fotor AI Image Upscaler 73
查看详情 Fotor AI Image Upscaler
from langchain.vectorstores import FAISS

# 使用文档块和嵌入创建 FAISS 向量数据库
docsearch = FAISS.from_texts(texts, embeddings)
登录后复制

FAISS.from_texts() 函数接受一个文档块列表和一个嵌入模型作为输入,并返回一个 FAISS 向量数据库。

使用 HuggingFaceHub 连接私有 LLM

LangChain 可以通过 HuggingFaceHub 类连接到 Hugging Face Hub 上的 LLM。

from langchain.llms import HuggingFaceHub

llm = HuggingFaceHub(repo_id = "google/flan-t5-base",
                     model_kwargs={"temperature":0.6,"max_length": 500, "max_new_tokens": 200
                                  })
登录后复制

repo_id 参数指定要使用的 LLM 的名称。google/flan-t5-base 是一个常用的开源 LLM。model_kwargs 参数可以用于配置 LLM 的参数,例如 temperature 和 max_length。

使用 RetrievalQA 进行问答

RetrievalQA 链可以用于从文档中检索信息并回答问题。

from langchain.prompts import PromptTemplate
from langchain.chains.retrieval_qa.base import RetrievalQA

prompt_template = """
Compare the book given in question with others in the retriever based on genre and description.
Return a complete sentence with the full title of the book and describe the similarities between the books.

question: {question}
context: {context}
"""

prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
retriever=docsearch.as_retriever()
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, chain_type_kwargs = {"prompt": prompt})
print(qa.run({"query": "Which book except 'To Kill A Mocking Bird' is similar to it?"}))
登录后复制

RetrievalQA.from_chain_type() 函数接受一个 LLM、一个链类型和一个检索器作为输入,并返回一个 RetrievalQA 链。 chain_type="stuff" 表示将所有检索到的文档块都传递给 LLM。retriever=docsearch.as_retriever() 将 FAISS 向量数据库转换为检索器。

总结

本文档提供了一个使用 LangChain 和开源 LLM 处理大型文档进行摘要和主题提取的实践教程。通过加载和分割文档,使用 HuggingFaceEmbeddings 进行嵌入,使用 FAISS 构建向量数据库,以及使用 RetrievalQA 进行问答,可以有效地从大型文档中提取信息。 请注意,私有 LLM 的 API 调用方式可能略有不同,需要根据具体的 API 文档进行调整。

以上就是使用 LangChain 和 Flan-T5-Small 进行文档摘要和主题提取的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号