ConcurrentHashMap通过减小锁粒度提升并发性能:JDK 1.7使用分段锁,JDK 1.8改用CAS+synchronized锁单个桶,核心思想一致。

在Java中,ConcurrentHashMap 是并发编程中最常用的线程安全Map实现之一。它通过分段锁(JDK 1.7)和CAS + synchronized(JDK 1.8 及以后)机制实现了高效的并发访问,避免了使用全局锁带来的性能瓶颈。虽然从JDK 1.8开始,内部实现已不再使用“分段锁”结构,但其设计思想仍然体现了“减小锁粒度”的优化原则。
在 JDK 1.7 中,ConcurrentHashMap 使用了分段锁(Segment)技术:将整个哈希表分成多个 Segment,每个 Segment 独立加锁。这样,不同线程访问不同 Segment 时不会相互阻塞,大大提升了并发吞吐量。
从 JDK 1.8 开始,Java 改用更高效的策略:使用 Node 数组 + 链表/红黑树 存储数据,并在发生冲突的链表节点上使用 synchronized 锁住单个桶(bucket),同时结合 CAS 操作进行插入。这种设计进一步细化了锁的粒度,接近“每节点锁”的效果。
尽管底层实现变化,但其核心思想一致:降低锁的竞争范围,提升并发性能。
立即学习“Java免费学习笔记(深入)”;
在实际开发中,我们可以基于 ConcurrentHashMap 的特性进行高效编程:
假设我们需要实现一个高频访问的计数器服务,统计每个用户的请求次数:
ConcurrentHashMap<String, Long> requestCount = new ConcurrentHashMap<>();
// 增加用户请求计数
public void increment(String userId) {
    requestCount.merge(userId, 1L, Long::sum);
}
这里使用 merge 方法,它是线程安全的,等价于“如果存在则相加,否则设为默认值”,无需额外同步。
另一个例子是缓存系统:
ConcurrentHashMap<String, Object> cache = new ConcurrentHashMap<>();
public Object getOrCompute(String key) {
    return cache.computeIfAbsent(key, this::loadFromDatabase);
}
</font>
computeIfAbsent 保证只有一个线程执行加载逻辑,其他线程等待结果,避免缓存击穿。
尽管 ConcurrentHashMap 是线程安全的,但仍有一些陷阱需要注意:
基本上就这些。ConcurrentHashMap 的设计体现了“分而治之”的并发优化思想,无论是否使用 Segment,其核心都是通过减小锁粒度来提升并发能力。掌握它的正确用法,能有效提升多线程程序的性能与稳定性。
以上就是在Java中如何使用ConcurrentHashMap实现分段锁优化_分段锁优化实践经验的详细内容,更多请关注php中文网其它相关文章!
 
                        
                        每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
 
                Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号