首先需将PyTorch模型转为TorchScript格式,再通过LibTorch在C++中加载并推理。具体步骤包括:使用torch.jit.trace或torch.jit.script导出模型为.pt文件;配置LibTorch开发环境,包含下载库、设置CMake并链接依赖;在C++中调用torch::jit::load()加载模型,构建输入张量并执行前向推理;注意保持预处理一致性和启用module.eval()与NoGradGuard优化性能。多线程部署时应为每个线程创建独立Module实例以避免竞争。该方法适用于低延迟及嵌入式场景。

在C++中使用LibTorch加载PyTorch模型,是将训练好的深度学习模型部署到生产环境中的常见方式。整个流程包括模型导出、C++环境配置、模型加载与推理执行。下面详细介绍如何实现。
LibTorch只能加载TorchScript格式的模型,因此需要先将Python中训练好的PyTorch模型转换为TorchScript。有两种主要方式:追踪(Tracing)和脚本化(Scripting)。
以一个简单的模型为例:
import torch
import torchvision
<h1>加载预训练模型</h1><p>model = torchvision.models.resnet18(pretrained=True)
model.eval()</p><h1>使用trace方式导出</h1><p>example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)</p><h1>保存为.pt文件</h1><p>traced_script_module.save("resnet18_model.pt")</p><p><span>立即学习</span>“<a href="https://pan.quark.cn/s/6e7abc4abb9f" style="text-decoration: underline !important; color: blue; font-weight: bolder;" rel="nofollow" target="_blank">C++免费学习笔记(深入)</a>”;</p>这会生成一个名为 resnet18_model.pt 的文件,可在C++中加载。
要使用LibTorch,需完成以下步骤:
示例CMakeLists.txt内容:
cmake_minimum_required(VERSION 3.0)
project(libtorch_example)
<p>set(CMAKE_CXX_STANDARD 14)</p>
<div class="aritcle_card">
<a class="aritcle_card_img" href="/ai/2100">
<img src="https://img.php.cn/upload/ai_manual/000/000/000/175680086070100.png" alt="度加剪辑">
</a>
<div class="aritcle_card_info">
<a href="/ai/2100">度加剪辑</a>
<p>度加剪辑(原度咔剪辑),百度旗下AI创作工具</p>
<div class="">
<img src="/static/images/card_xiazai.png" alt="度加剪辑">
<span>63</span>
</div>
</div>
<a href="/ai/2100" class="aritcle_card_btn">
<span>查看详情</span>
<img src="/static/images/cardxiayige-3.png" alt="度加剪辑">
</a>
</div>
<h1>指向LibTorch解压路径</h1><p>set(LIBTORCH /path/to/libtorch)</p><p>find_package(Torch REQUIRED)</p><p>add_executable(main main.cpp)
target_link_libraries(main ${TORCH_LIBRARIES})
set_property(TARGET main PROPERTY CXX_STANDARD 14)</p>使用 torch::jit::load() 函数加载模型,并传入输入张量进行推理。
示例代码:
#include <torch/torch.h>
#include <iostream>
<p>int main() {
// 加载模型
try {
torch::jit::script::Module module = torch::jit::load("resnet18_model.pt");
std::cout << "模型加载成功!\n";
} catch (const c10::Error& e) {
std::cerr << "模型加载失败: " << e.msg() << "\n";
return -1;
}</p><pre class='brush:php;toolbar:false;'>// 创建输入张量
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::randn({1, 3, 224, 224}));
// 执行推理
at::Tensor output = module.forward(inputs).toTensor();
std::cout << "输出维度: " << output.sizes() << "\n";
std::cout << "预测结果: " << output.argmax(1) << "\n";
return 0;}
注意:输入数据通常需要做与训练时相同的预处理,如归一化、Resize等,可借助OpenCV读取图像并转换为Tensor。
实际使用中可能遇到的问题:
torch.jit.script
module.eval() 和使用 torch::NoGradGuard
基本上就这些。只要模型正确导出,C++端配置无误,LibTorch能稳定高效地运行PyTorch模型。适合对延迟敏感或嵌入式部署场景。
以上就是c++++怎么用libtorch加载一个PyTorch模型_C++深度学习模型加载与libtorch实践的详细内容,更多请关注php中文网其它相关文章!
c++怎么学习?c++怎么入门?c++在哪学?c++怎么学才快?不用担心,这里为大家提供了c++速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号