答案:编写健壮的Python爬虫需结合异常处理、重试机制与日志记录。首先捕获requests和解析库常见异常,如RequestException、Timeout、ConnectionError、HTTPError及AttributeError;通过try-except结构包裹请求与解析逻辑,并设置重试策略应对临时故障;推荐使用tenacity库实现带间隔的自动重试;生产环境中应采用logging模块记录错误详情,便于排查;同时通过设置请求头、控制频率、使用with语句和字段校验等预防措施提升稳定性。最终目标是让爬虫在出错时能优雅恢复而非崩溃。

在编写Python爬虫时,网络请求和数据解析过程容易受到各种外部因素影响,比如网络不稳定、目标网站结构变化、反爬机制触发等。因此,合理的异常处理机制是保证爬虫稳定运行的关键。
常见异常类型及捕获方法
爬虫中最常见的异常主要来自网络请求库(如requests)和HTML解析库(如BeautifulSoup、lxml)。以下是几种典型异常及其处理方式:
- requests.exceptions.RequestException:这是所有requests异常的基类,包括连接超时、DNS解析失败、SSL错误等。建议统一捕获此类异常以增强健壮性。
- Timeout:请求超时时抛出。可通过设置合理的timeout参数并重试来应对。
- ConnectionError:网络连接问题,例如服务器无响应或本地网络中断。
- HTTPError:HTTP状态码异常,如404、500等,可通过检查response.status_code提前判断。
- AttributeError / IndexError:解析页面时元素不存在导致的错误,常见于使用select或find方法后未判断结果是否存在。
示例代码:
使用try-except结构对请求和解析过程进行包裹:
立即学习“Python免费学习笔记(深入)”;
import requests from bs4 import BeautifulSoup import timedef fetch_page(url, retries=3): for i in range(retries): try: response = requests.get(url, timeout=5) response.raise_for_status() # 触发HTTPError(如4xx/5xx) soup = BeautifulSoup(response.text, 'html.parser') title = soup.select_one('h1').text return title except requests.exceptions.Timeout: print(f"请求超时,第{i+1}次重试...") time.sleep(2) except requests.exceptions.ConnectionError: print("连接失败,检查网络或URL") break except requests.exceptions.RequestException as e: print(f"请求发生未知错误: {e}") break except AttributeError: print("页面结构改变,未找到指定元素") break return None
使用重试机制提升稳定性
对于临时性故障(如短暂超时、限流),简单的重试策略能显著提高成功率。除了手动循环重试,也可以借助第三方库如tenacity实现更灵活的控制。
安装tenacity:pip install tenacity
使用装饰器自动重试:
from tenacity import retry, stop_after_attempt, wait_fixed@retry(stop=stop_after_attempt(3), wait=wait_fixed(2)) def get_data_with_retry(url): response = requests.get(url, timeout=5) response.raise_for_status() return response.json()
上述代码表示最多尝试3次,每次间隔2秒,适用于API接口类爬取任务。
日志记录与错误分类处理
生产级爬虫应避免仅用print输出错误信息,而应使用logging模块记录异常详情,便于后期排查问题。
import logginglogging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', handlers=[ logging.FileHandler("spider.log"), logging.StreamHandler() ] )
try: result = fetch_page("https://www.php.cn/link/b05edd78c294dcf6d960190bf5bde635") except Exception as e: logging.error(f"抓取失败: {url}, 错误: {e}", exc_info=True)
exc_info=True可记录完整的堆栈信息,有助于定位深层问题。
预防性处理与资源管理
除被动捕获异常外,还应主动规避风险:
- 设置合理的请求头(User-Agent、Referer),降低被封概率。
- 控制请求频率,加入随机延时避免触发反爬。
- 使用上下文管理器确保资源释放,例如with语句封装请求。
- 对关键字段做存在性校验,如if tag:再取.text。
基本上就这些。一个健壮的爬虫不是不报错,而是能优雅地面对错误并做出合适反应。合理运用try-except、重试机制和日志系统,可以让爬虫在复杂环境中持续可靠运行。










