0

0

Dask DataFrame字符串列拆分与展开:应对自动类型转换的策略

聖光之護

聖光之護

发布时间:2025-11-26 11:47:02

|

975人浏览过

|

来源于php中文网

原创

Dask DataFrame字符串列拆分与展开:应对自动类型转换的策略

本教程旨在解决dask dataframe中对多字符串列进行分隔符拆分并展开为多行时遇到的问题。当结合使用`str.split()`和`explode()`方法时,由于dask在特定版本(2023.7.1及以后)与pandas 2+、pyarrow 12+环境下可能发生的自动字符串类型转换,导致`str.split()`返回字符串化的列表而非实际列表,从而使`explode()`失效。文章将深入探讨此问题成因,并提供通过配置dask来禁用自动类型转换的解决方案。

Dask DataFrame中字符串列的拆分与展开

在处理大规模数据集时,Dask DataFrame是Python中一个强大的工具,尤其适用于超出内存的数据集。数据预处理中一个常见的需求是将包含多个由分隔符连接的值的字符串列拆分成多个单独的行,即从宽格式转换为长格式。Pandas DataFrame提供了Series.str.split()和DataFrame.explode()这两个便捷的方法来完成这项任务。然而,在Dask环境中尝试相同的操作时,可能会遇到意想不到的行为。

问题描述:Dask str.split()与explode()的结合失效

假设我们有一个Dask DataFrame,其中包含多个列,这些列的值是逗号分隔的字符串。例如,在基因变异注释数据中,一个变异可能对应多个效应、基因ID等,这些信息存储在同一行但不同列的逗号分隔字符串中。我们的目标是将这些逗号分隔的字符串拆分成独立的行,同时保持不同列之间值的对应关系。

在Pandas中,这个过程通常是直观的:首先使用str.split()将字符串转换为列表,然后使用explode()将列表中的每个元素扩展为一行。

import pandas as pd
import dask.dataframe as ddf
import dask # 导入dask以便配置

# 示例数据
data = {
    "CHROM": [1, 1, 2],
    "POS": [10000, 11000, 20000],
    "ID": ["1-10000-A-C", "1-11000-A-G", "2-20000-T-C"],
    "REF": ["A", "A", "T"],
    "ALT": ["C", "G", "C"],
    "Consequence": ["con11,con12,con13", "con21", ".,.,.,.,."],
    "Ensembl_geneid": ["gene11,.,gene13", "gene21", ".,.,.,.,."],
    "Ensembl_proteinid": ["prot11,.,prot13", "prot21", ".,.,.,.,."],
    "Ensembl_transcriptid": ["tra11,.,tra13", "tra21", ".,.,.,.,."]
}
reqd_cols = ["Consequence", "Ensembl_geneid", "Ensembl_proteinid", "Ensembl_transcriptid"]

print("--- Pandas 实现 ---")
df_pandas = pd.DataFrame(data)
for col in reqd_cols:
    df_pandas[col] = df_pandas[col].str.split(pat=",", expand=False)
df_pandas = df_pandas.explode(column=reqd_cols, ignore_index=True)
print(df_pandas.info(verbose=True))
print(df_pandas.head())

上述Pandas代码能够按预期工作,str.split()将字符串转换为list[str]类型,随后explode()正确地展开了这些列表。

然而,当尝试在Dask DataFrame中执行相同的逻辑时,explode()方法似乎不起作用,或者产生了非预期的结果。经过检查,发现在Dask中,Series.str.split()操作后的列,其元素类型并非是实际的Python列表,而是列表的字符串表示(例如,"['con11', 'con12', 'con13']"而不是['con11', 'con12', 'con13'])。这种类型上的差异导致explode()无法识别并展开这些“列表”。

print("\n--- Dask 实现 (问题版本) ---")
# 从Pandas DataFrame创建Dask DataFrame
ddf_problem = ddf.from_pandas(data=pd.DataFrame(data), npartitions=1)

for col in reqd_cols:
    ddf_problem[col] = ddf_problem[col].str.split(pat=",", n=-1, expand=False)

# 在这里,如果直接执行explode,会发现它没有按预期工作
ddf_problem_exploded = ddf_problem.explode(column=reqd_cols)

print(ddf_problem_exploded.info(verbose=True))
print(ddf_problem_exploded.head())

运行上述Dask代码会发现,df_problem_exploded.head()的结果与原始Dask DataFrame的head()几乎没有变化,表明explode操作未能成功展开数据。

造梦阁AI
造梦阁AI

AI小说推文一键成片,你的故事值得被看见

下载

问题根源:Dask的自动字符串类型转换

此问题的根本原因在于Dask在特定版本(Dask 2023.7.1及更高版本)中引入的一项特性:当Pandas版本为2.0或更高且PyArrow版本为12.0或更高时,Dask DataFrame会自动将使用object数据类型存储的文本数据转换为string[pyarrow]数据类型。

虽然string[pyarrow]在某些场景下可以提供性能优势,但在本例中,它与Series.str.split()的交互方式导致了问题。当列被转换为string[pyarrow]类型后,str.split()操作的结果不再是Python的list对象,而是被封装成一个字符串,从而使得后续的explode()方法无法正确识别和处理。

解决方案:禁用Dask的自动字符串类型转换

为了解决这个问题,我们可以在创建Dask DataFrame之前,通过Dask的配置系统禁用这项自动类型转换功能。具体来说,设置dataframe.convert-string配置项为False即可。

import pandas as pd
import dask.dataframe as ddf
import dask

# 示例数据
data = {
    "CHROM": [1, 1, 2],
    "POS": [10000, 11000, 20000],
    "ID": ["1-10000-A-C", "1-11000-A-G", "2-20000-T-C"],
    "REF": ["A", "A", "T"],
    "ALT": ["C", "G", "C"],
    "Consequence": ["con11,con12,con13", "con21", ".,.,.,.,."],
    "Ensembl_geneid": ["gene11,.,gene13", "gene21", ".,.,.,.,."],
    "Ensembl_proteinid": ["prot11,.,prot13", "prot21", ".,.,.,.,."],
    "Ensembl_transcriptid": ["tra11,.,tra13", "tra21", ".,.,.,.,."]
}
reqd_cols = ["Consequence", "Ensembl_geneid", "Ensembl_proteinid", "Ensembl_transcriptid"]

print("\n--- Dask 实现 (解决方案) ---")

# 在创建Dask DataFrame之前,禁用自动字符串类型转换
dask.config.set({"dataframe.convert-string": False})

# 从Pandas DataFrame创建Dask DataFrame
ddf_fixed = ddf.from_pandas(data=pd.DataFrame(data), npartitions=1)

for col in reqd_cols:
    ddf_fixed[col] = ddf_fixed[col].str.split(pat=",", n=-1, expand=False)

# 现在explode应该能按预期工作
ddf_fixed_exploded = ddf_fixed.explode(column=reqd_cols)

print(ddf_fixed_exploded.info(verbose=True))
print(ddf_fixed_exploded.head(10)) # 显示更多行以验证展开效果

通过在创建Dask DataFrame之前添加dask.config.set({"dataframe.convert-string": False})这一行代码,Dask将不再自动将object类型的字符串列转换为string[pyarrow]。这样,Series.str.split()就能正确地返回Python列表,从而使DataFrame.explode()能够正常工作,实现我们期望的数据展开效果。

注意事项与总结

  1. 版本依赖:此问题和解决方案主要针对Dask 2023.7.1及更高版本,结合Pandas 2+和PyArrow 12+的环境。如果您的Dask、Pandas或PyArrow版本较低,可能不会遇到此问题,或者需要查找其他解决方案。
  2. 性能考量:dataframe.convert-string配置项的引入旨在优化字符串处理性能。禁用此功能可能会导致在某些场景下,字符串操作的性能略有下降,因为Dask将回退到使用Pandas的object dtype字符串处理方式。对于本例中的str.split()和explode()组合,禁用此功能是实现正确行为的关键。
  3. 数据类型:确保在进行str.split()操作之前,目标列确实是字符串类型。Dask的read_csv等函数通常可以正确推断类型,但如果需要,可以通过dtypes_mapping参数显式指定。
  4. 内存管理:explode()操作会显著增加DataFrame的行数,从而增加内存消耗。在使用Dask处理大型数据集时,务必注意内存使用情况,并根据需要调整分区数量(npartitions)或使用Dask的分布式计算能力。

通过理解Dask内部的数据类型处理机制,并适当地调整配置,我们可以有效解决在Dask DataFrame中进行复杂字符串操作时遇到的挑战,从而更高效地处理大规模结构化数据。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

754

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

707

2023.08.11

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

6

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号