ReentrantLock是Java中可重入的显式锁,相比synchronized提供更高灵活性,支持公平锁、尝试获取、中断响应等;通过lock()和unlock()手动控制加锁释放,需配合try-finally防止泄漏;具备可重入性,同一线程可多次获取锁,适用于复杂并发场景。

Java中,ReentrantLock 是一种可重入的互斥锁,它提供了比 synchronized 更灵活的锁机制。相比 synchronized 的隐式获取和释放,ReentrantLock 需要手动控制加锁与解锁,但带来了更高的可控性,比如支持公平锁、非阻塞尝试获取锁、中断响应等特性。
以下是一个简单的多线程计数器示例,展示如何使用 ReentrantLock 保证线程安全:
import java.util.concurrent.locks.ReentrantLock;
public class Counter {
private int count = 0;
private final ReentrantLock lock = new ReentrantLock();
public void increment() {
lock.lock(); // 手动加锁
try {
count++;
} finally {
lock.unlock(); // 必须在finally中释放锁
}
}
public int getCount() {
lock.lock();
try {
return count;
} finally {
lock.unlock();
}
}
}
说明: 使用 lock() 获取锁,unlock() 释放锁。务必把 unlock() 放在 finally 块中,防止因异常导致锁无法释放。
ReentrantLock 支持同一线程多次获取同一把锁,不会造成死锁,这就是“可重入”的含义。每次 lock() 会增加持有计数,对应地需要调用相同次数的 unlock() 才能真正释放锁。
立即学习“Java免费学习笔记(深入)”;
public void methodA() {
lock.lock();
try {
System.out.println("methodA");
methodB(); // 同一线程再次进入,不会阻塞
} finally {
lock.unlock();
}
}
public void methodB() {
lock.lock();
try {
System.out.println("methodB");
} finally {
lock.unlock();
}
}
上面代码中,同一个线程调用 methodA 后进入 methodB,依然可以成功获取锁,体现了可重入特性。
ReentrantLock 构造时可指定是否为公平锁:
例如:
ReentrantLock fairLock = new ReentrantLock(true); // 公平锁
ReentrantLock 提供了比 synchronized 更丰富的控制手段:
示例:带超时的锁获取
if (lock.tryLock(3, TimeUnit.SECONDS)) {
try {
// 成功获取锁,执行操作
} finally {
lock.unlock();
}
} else {
// 获取失败,处理超时逻辑
}
两者都能实现线程同步,但有明显区别:
基本上就这些。掌握 ReentrantLock 的使用,有助于写出更高效、可控的并发程序。注意合理使用 try-finally 结构,避免死锁或资源泄漏。
以上就是Java如何使用ReentrantLock实现锁控制_Java可重入锁的使用示例与原理解析的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号