网页数据爬取需兼顾质量、结构、合规与工程性:明确任务需求→遵守robots.txt与隐私规范→依页面类型选requests/Playwright→结构化保存为JSONL等训练友好格式→抽样核验、SimHash去重、过滤低质页。

AI模型训练中,网页数据爬取不是单纯“把网页存下来”,而是要确保数据质量、结构清晰、可复用,并适配后续清洗、标注与建模环节。整个流程需兼顾合法性、稳定性与工程可维护性。
先问清楚:你要训练什么任务?需要什么类型的数据?文本、图片、表格还是POI信息?不同任务对数据格式、噪声容忍度、时效性要求差异很大。
务必检查目标网站的 robots.txt(如 https://example.com/robots.txt),避开禁止抓取路径;优先选择公开、非登录、无反爬校验的页面;避免高频请求,加随机延时;涉及个人信息或版权内容,不采集、不存储、不用于商用训练。
手机网页或轻量PC站大多可直接请求HTML,适合用 Python 的 requests + BeautifulSoup 快速提取:
import requests
from bs4 import BeautifulSoup
resp = requests.get(url, headers={"User-Agent": "Mozilla/5.0..."})
soup = BeautifulSoup(resp.text, "html.parser")
titles = [h2.text.strip() for h2 in soup.select("article h2")]
但遇到 JavaScript 渲染内容(如滚动加载、点击展开、登录态才显示)——必须用浏览器自动化工具:
爬下来的数据不能堆成一堆 HTML 文件。要按训练 pipeline 要求组织格式:
示例配置(Playwright 爬取文档站):
export const config = {
url: "https://docs.example.ai/guide",
match: "https://docs.example.ai/guide/**",
selector: ".content-main", // 只取正文区域
outputFormat: "jsonl", // 不是 HTML,不是 Markdown,是训练友好格式
};
爬虫跑通≠数据可用。上线前至少做三件事:
这些步骤可在爬取后加一个 Python 脚本完成,不用改爬虫主逻辑。
基本上就这些。不复杂但容易忽略的是:每次爬完别急着喂模型,先花10分钟看看数据长什么样——很多训练失败,根源不在参数,而在第一行数据就错了。
以上就是AI模型训练如何实现爬取网页数据的完整流程【教程】的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号