0

0

Python强化学习入门教程_Q-learning与策略优化实践

舞夢輝影

舞夢輝影

发布时间:2025-12-30 19:23:54

|

824人浏览过

|

来源于php中文网

原创

Q-learning是一种无模型强化学习算法,通过Q表存储状态-动作价值,按贝尔曼方程迭代更新:Q(s,a)←Q(s,a)+α[r+γmaxₐ′Q(s′,a′)−Q(s,a)],结合ε-greedy策略实现探索与利用平衡。

python强化学习入门教程_q-learning与策略优化实践

Q-learning 是强化学习中最经典、最易上手的无模型(model-free)算法之一,适合初学者理解“试错—奖励—价值更新”的核心逻辑。它不依赖环境动态模型,仅靠与环境交互产生的状态-动作-奖励序列,就能逐步学习最优策略。

Q-learning 的核心思想:用表格记住“在哪种状态下做哪个动作最值得”

Q-learning 维护一张 Q 表(Q-table),行是状态(state),列是动作(action),每个单元格存的是当前估计的“动作价值”——即从该状态执行该动作后,未来能获得的累计奖励期望值(带折扣)。算法通过贝尔曼方程不断迭代更新:

Q(s, a) ← Q(s, a) + α [r + γ maxₐ′ Q(s′, a′) − Q(s, a)]

其中:
α 是学习率(如 0.1),控制更新步长;
γ 是折扣因子(如 0.99),决定未来奖励的重要性;
r 是即时奖励;
s′ 是执行 a 后到达的新状态。

关键点:
• 每次更新只依赖当前经验(s, a, r, s′),无需完整轨迹;
• maxₐ′ Q(s′, a′) 体现“贪婪选择”,即假设后续都选最优动作;
• 算法本身是 off-policy,行为策略(如 ε-greedy)可探索,但更新始终朝向最优动作价值靠拢。

用 Python 实现一个可运行的 Q-learning 示例(以 FrozenLake 为例)

FrozenLake 是 OpenAI Gym 中的经典网格世界环境:4×4 冰面,有起点 S、目标 G、陷阱 H 和安全冰块 F。智能体需在不掉进陷阱的前提下走到目标,每步奖励为 0,成功抵达得 +1,掉坑得 0。

立即学习Python免费学习笔记(深入)”;

代码要点(精简版):

Bika.ai
Bika.ai

打造您的AI智能体员工团队

下载
  • 初始化 Q 表:np.zeros((env.observation_space.n, env.action_space.n))
  • ε-greedy 策略:以概率 ε 随机选动作,否则选当前 Q 值最大的动作
  • 训练循环中,对每条 (s, a, r, s′) 经验执行一次 Q 更新
  • ε 随训练衰减(如 ε = max(0.01, ε * 0.995)),平衡探索与利用
  • 每轮训练后测试策略胜率,观察收敛趋势

运行 10000 轮后,典型表现是胜率从接近 0% 稳步升至 70–85%,说明 Q 表已学到较稳健路径。

策略优化不是终点:常见改进方向与实用技巧

基础 Q-learning 在简单环境效果好,但面对高维状态(如图像)、连续动作或稀疏奖励时会失效。实际应用中常结合以下优化:

  • 状态抽象/特征工程:对原始状态降维或映射为有意义特征(如距离目标的曼哈顿距离),缓解维度灾难
  • 函数逼近替代查表:用神经网络拟合 Q 函数(即 DQN),支持像素输入和大规模状态空间
  • 经验回放(Experience Replay):把历史经验存入缓冲池,随机采样打破数据相关性,提升训练稳定性
  • 目标网络(Target Network):用独立网络计算 maxₐ′ Q(s′, a′),避免 Q 值震荡,DQN 的关键设计
  • 奖励塑形(Reward Shaping):在原奖励基础上增加辅助信号(如靠近目标+0.1),加速稀疏奖励下的学习

动手前的小提醒:别跳过环境理解与超参调试

很多初学者卡在“Q 表不收敛”或“策略始终乱走”,问题往往不在代码,而在:

  • 没看懂环境的 reward 设计(比如 FrozenLake 默认 step reward=0,成功才+1;某些版本默认每步−0.1,逻辑完全不同)
  • γ 设太高(0.999)导致早期错误长期影响,太低(0.5)又忽略长远目标
  • ε 衰减太快,还没探索完就锁死在次优策略;或太慢,后期仍频繁随机扰动
  • 学习率 α 固定为 0.1 —— 更稳妥的做法是随训练轮数缓慢下降(如 α = 1/√t)

建议先打印中间 Q 表、记录每轮总奖励、可视化策略热力图,比盲目调参更有效。

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

715

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

625

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

738

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1235

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

574

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

697

2023.08.11

桌面文件位置介绍
桌面文件位置介绍

本专题整合了桌面文件相关教程,阅读专题下面的文章了解更多内容。

0

2025.12.30

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.6万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号