0

0

python爬虫抓站的实用技巧

高洛峰

高洛峰

发布时间:2017-02-25 13:41:51

|

1464人浏览过

|

来源于php中文网

原创

前言

写过的这些脚本有一个共性,都是和web相关的,总要用到获取链接的一些方法,累积不少爬虫抓站的经验,在此总结一下,那么以后做东西也就不用重复劳动了。

1.最基本的抓站

import urllib2
content = urllib2.urlopen('http://XXXX').read()

2.使用代理服务器

立即学习Python免费学习笔记(深入)”;

这在某些情况下比较有用,比如IP被封了,或者比如IP访问的次数受到限制等等。

import urllib2
proxy_support = urllib2.ProxyHandler({'http':'http://XX.XX.XX.XX:XXXX'})
opener = urllib2.build_opener(proxy_support, urllib2.HTTPHandler)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

3.需要登录的情况

登录的情况比较麻烦我把问题拆分一下:

3.1 cookie的处理

import urllib2, cookielib
cookie_support= urllib2.HTTPCookieProcessor(cookielib.CookieJar())
opener = urllib2.build_opener(cookie_support, urllib2.HTTPHandler)
urllib2.install_opener(opener)
content = urllib2.urlopen('http://XXXX').read()

是的没错,如果想同时用代理和cookie,那就加入proxy_support然后operner改为

opener = urllib2.build_opener(proxy_support, cookie_support, urllib2.HTTPHandler)

3.2 表单的处理

登录必要填表,表单怎么填?首先利用工具截取所要填表的内容。

比如我一般用firefox+httpfox插件来看看自己到底发送了些什么包

这个我就举个例子好了,以verycd为例,先找到自己发的POST请求,以及POST表单项:

python爬虫抓站的实用技巧

可以看到verycd的话需要填username,password,continueURI,fk,login_submit这几项,其中fk是随机生成的(其实不太随机,看上去像是把epoch时间经过简单的编码生成的),需要从网页获取,也就是说得先访问一次网页,用正则表达式等工具截取返回数据中的fk项。continueURI顾名思义可以随便写,login_submit是固定的,这从源码可以看出。还有username,password那就很显然了。

好的,有了要填写的数据,我们就要生成postdata

import urllib
postdata=urllib.urlencode({
 'username':'XXXXX',
 'password':'XXXXX',
 'continueURI':'http://www.verycd.com/',
 'fk':fk,
 'login_submit':'登录'
})

然后生成http请求,再发送请求:

req = urllib2.Request(
 url = 'http://secure.verycd.com/signin/*/http://www.php.cn/',
 data = postdata
)
result = urllib2.urlopen(req).read()

3.3 伪装成浏览器访问

某些网站反感爬虫的到访,于是对爬虫一律拒绝请求。这时候我们需要伪装成浏览器,这可以通过修改http包中的header来实现:

headers = {
 'User-Agent':'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.6) Gecko/20091201 Firefox/3.5.6'
}
req = urllib2.Request(
 url = 'http://secure.verycd.com/signin/*/http://www.php.cn/',
 data = postdata,
 headers = headers
)

3.4 反”反盗链”

某些站点有所谓的反盗链设置,其实说穿了很简单,就是检查你发送请求的header里面,referer站点是不是他自己,所以我们只需要像3.3一样,把headers的referer改成该网站即可,以黑幕著称地cnbeta为例:

headers = {
 'Referer':'http://www.cnbeta.com/articles'
}

headers是一个dict数据结构,你可以放入任何想要的header,来做一些伪装。例如,有些自作聪明的网站总喜欢窥人隐私,别人通过代理访问,他偏偏要读取header中的X-Forwarded-For来看看人家的真实IP,没话说,那就直接把X-Forwarde-For改了吧,可以改成随便什么好玩的东东来欺负欺负他,呵呵。

3.5 终极绝招

有时候即使做了3.1-3.4,访问还是会被据,那么没办法,老老实实把httpfox中看到的headers全都写上,那一般也就行了。 再不行,那就只能用终极绝招了, selenium 直接控制浏览器来进行访问,只要浏览器可以做到的,那么它也可以做到。类似的还有pamie,watir,等等等等。

4.多线程并发抓取

单线程太慢的话,就需要多线程了,这里给个简单的线程池模板 这个程序只是简单地打印了1-10,但是可以看出是并发地。

from threading import Thread
from Queue import Queue
from time import sleep
#q是任务队列
#NUM是并发线程总数
#JOBS是有多少任务
q = Queue()
NUM = 2
JOBS = 10
#具体的处理函数,负责处理单个任务
def do_somthing_using(arguments):
 print arguments
#这个是工作进程,负责不断从队列取数据并处理
def working():
 while True:
  arguments = q.get()
  do_somthing_using(arguments)
  sleep(1)
  q.task_done()
#fork NUM个线程等待队列
for i in range(NUM):
 t = Thread(target=working)
 t.setDaemon(True)
 t.start()
#把JOBS排入队列
for i in range(JOBS):
 q.put(i)
#等待所有JOBS完成
q.join()

5.验证码的处理

碰到验证码咋办?这里分两种情况处理:

     1、google那种验证码,凉拌

     2、简单的验证码:字符个数有限,只使用了简单的平移或旋转加噪音而没有扭曲的,这种还是有可能可以处理的,一般思路是旋转的转回来,噪音去掉,然后划分单个字符,划分好了以后再通过特征提取的方法(例如PCA)降维并生成特征库,然后把验证码和特征库进行比较。这个比较复杂,一篇博文是说不完的,这里就不展开了,具体做法请弄本相关教科书好好研究一下。

事实上有些验证码还是很弱的,这里就不点名了,反正我通过2的方法提取过准确度非常高的验证码,所以2事实上是可行的。

先见AI
先见AI

数据为基,先见未见

下载

6 gzip/deflate支持

现在的网页普遍支持gzip压缩,这往往可以解决大量传输时间,以 VeryCD 的主页为例,未压缩版本247K,压缩了以后45K,为原来的1/5。这就意味着抓取速度会快5倍。

然而python的urllib/urllib2默认都不支持压缩,要返回压缩格式,必须在request的header里面写明'accept-encoding',然后读取response后更要检查header查看是否有'content-encoding'一项来判断是否需要解码,很繁琐琐碎。如何让urllib2自动支持gzip, defalte呢?

其实可以继承 BaseHanlder 类,然后build_opener的方式来处理:

import urllib2
from gzip import GzipFile
from StringIO import StringIO
class ContentEncodingProcessor(urllib2.BaseHandler):
 """A handler to add gzip capabilities to urllib2 requests """
 
 # add headers to requests
 def http_request(self, req):
 req.add_header("Accept-Encoding", "gzip, deflate")
 return req
 
 # decode
 def http_response(self, req, resp):
 old_resp = resp
 # gzip
 if resp.headers.get("content-encoding") == "gzip":
  gz = GzipFile(
     fileobj=StringIO(resp.read()),
     mode="r"
     )
  resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code)
  resp.msg = old_resp.msg
 # deflate
 if resp.headers.get("content-encoding") == "deflate":
  gz = StringIO( deflate(resp.read()) )
  resp = urllib2.addinfourl(gz, old_resp.headers, old_resp.url, old_resp.code) # 'class to add info() and
  resp.msg = old_resp.msg
 return resp
 
# deflate support
import zlib
def deflate(data): # zlib only provides the zlib compress format, not the deflate format;
 try:    # so on top of all there's this workaround:
 return zlib.decompress(data, -zlib.MAX_WBITS)
 except zlib.error:
 return zlib.decompress(data)

然后就简单了,

encoding_support = ContentEncodingProcessor
opener = urllib2.build_opener( encoding_support, urllib2.HTTPHandler )
 
#直接用opener打开网页,如果服务器支持gzip/defalte则自动解压缩
content = opener.open(url).read()

7. 更方便地多线程

总结一文的确提及了一个简单的多线程模板,但是那个东东真正应用到程序里面去只会让程序变得支离破碎,不堪入目。在怎么更方便地进行多线程方面我也动了一番脑筋。先想想怎么进行多线程调用最方便呢?

1、用twisted进行异步I/O抓取

事实上更高效的抓取并非一定要用多线程,也可以使用异步I/O法:直接用twisted的getPage方法,然后分别加上异步I/O结束时的callback和errback方法即可。例如可以这么干:

from twisted.web.client import getPage
from twisted.internet import reactor
 
links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ]
 
def parse_page(data,url):
 print len(data),url
 
def fetch_error(error,url):
 print error.getErrorMessage(),url
 
# 批量抓取链接
for url in links:
 getPage(url,timeout=5) \
  .addCallback(parse_page,url) \ #成功则调用parse_page方法
  .addErrback(fetch_error,url)  #失败则调用fetch_error方法
 
reactor.callLater(5, reactor.stop) #5秒钟后通知reactor结束程序
reactor.run()

twisted人如其名,写的代码实在是太扭曲了,非正常人所能接受,虽然这个简单的例子看上去还好;每次写twisted的程序整个人都扭曲了,累得不得了,文档等于没有,必须得看源码才知道怎么整,唉不提了。

如果要支持gzip/deflate,甚至做一些登陆的扩展,就得为twisted写个新的 HTTPClientFactory 类诸如此类,我这眉头真是大皱,遂放弃。有毅力者请自行尝试。

2、设计一个简单的多线程抓取类

还是觉得在urllib之类python“本土”的东东里面折腾起来更舒服。试想一下,如果有个Fetcher类,你可以这么调用

f = Fetcher(threads=10) #设定下载线程数为10
for url in urls:
 f.push(url) #把所有url推入下载队列
while f.taskleft(): #若还有未完成下载的线程
 content = f.pop() #从下载完成队列中取出结果
 do_with(content) # 处理content内容

这么个多线程调用简单明了,那么就这么设计吧,首先要有两个队列,用Queue搞定,多线程的基本架构也和“技巧总结”一文类似,push方法和pop方法都比较好处理,都是直接用Queue的方法,taskleft则是如果有“正在运行的任务”或者”队列中的任务”则为是,也好办,于是代码如下:

import urllib2
from threading import Thread,Lock
from Queue import Queue
import time
 
class Fetcher:
 def __init__(self,threads):
  self.opener = urllib2.build_opener(urllib2.HTTPHandler)
  self.lock = Lock() #线程锁
  self.q_req = Queue() #任务队列
  self.q_ans = Queue() #完成队列
  self.threads = threads
  for i in range(threads):
   t = Thread(target=self.threadget)
   t.setDaemon(True)
   t.start()
  self.running = 0
 
 def __del__(self): #解构时需等待两个队列完成
  time.sleep(0.5)
  self.q_req.join()
  self.q_ans.join()
 
 def taskleft(self):
  return self.q_req.qsize()+self.q_ans.qsize()+self.running
 
 def push(self,req):
  self.q_req.put(req)
 
 def pop(self):
  return self.q_ans.get()
 
 def threadget(self):
  while True:
   req = self.q_req.get()
   with self.lock: #要保证该操作的原子性,进入critical area
    self.running += 1
   try:
    ans = self.opener.open(req).read()
   except Exception, what:
    ans = ''
    print what
   self.q_ans.put((req,ans))
   with self.lock:
    self.running -= 1
   self.q_req.task_done()
   time.sleep(0.1) # don't spam
 
if __name__ == "__main__":
 links = [ 'http://www.verycd.com/topics/%d/'%i for i in range(5420,5430) ]
 f = Fetcher(threads=10)
 for url in links:
  f.push(url)
 while f.taskleft():
  url,content = f.pop()
  print url,len(content)

8. 一些琐碎的经验

1、连接池:

opener.open和urllib2.urlopen一样,都会新建一个http请求。通常情况下这不是什么问题,因为线性环境下,一秒钟可能也就新生成一个请求;然而在多线程环境下,每秒钟可以是几十上百个请求,这么干只要几分钟,正常的有理智的服务器一定会封禁你的。

然而在正常的html请求时,保持同时和服务器几十个连接又是很正常的一件事,所以完全可以手动维护一个 HttpConnection 的池,然后每次抓取时从连接池里面选连接进行连接即可。

这里有一个取巧的方法,就是利用squid做代理服务器来进行抓取,则squid会自动为你维护连接池,还附带数据缓存功能,而且squid本来就是我每个服务器上面必装的东东,何必再自找麻烦写连接池呢。

2、设定线程的栈大小

栈大小的设定将非常显著地影响python的内存占用,python多线程不设置这个值会导致程序占用大量内存,这对openvz的vps来说非常致命。stack_size必须大于32768,实际上应该总要32768*2以上

from threading import stack_size
stack_size(32768*16)

3、设置失败后自动重试

 def get(self,req,retries=3):
  try:
   response = self.opener.open(req)
   data = response.read()
  except Exception , what:
   print what,req
   if retries>0:
    return self.get(req,retries-1)
   else:
    print 'GET Failed',req
    return ''
  return data

4、设置超时

 import socket
 socket.setdefaulttimeout(10) #设置10秒后连接超时

登陆更加简化了,首先build_opener中要加入cookie支持,如要登陆 VeryCD ,给Fetcher新增一个空方法login,并在 init ()中调用,然后继承Fetcher类并override login方法:

def login(self,username,password):
 import urllib
 data=urllib.urlencode({'username':username,
       'password':password,
       'continue':'http://www.verycd.com/',
       'login_submit':u'登录'.encode('utf-8'),
       'save_cookie':1,})
 url = 'http://www.verycd.com/signin'
 self.opener.open(url,data).read()

于是在Fetcher初始化时便会自动登录 VeryCD 网站。

9. 总结

如此,以上就是总结python爬虫抓站的实用技巧的全部内容了,本文内容代码简单,使用方便,性能也不俗,相信对各位使用python有很大的帮助。

更多python爬虫抓站的实用技巧相关文章请关注PHP中文网!

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

0

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

2

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

10

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

2

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

63

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

32

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

73

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

20

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

25

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
微信小程序开发之API篇
微信小程序开发之API篇

共15课时 | 1.2万人学习

Python 并发编程实战
Python 并发编程实战

共12课时 | 0.7万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号