首页 > 专题 > word > 正文

word2vector原理

(*-*)浩
发布: 2020-01-10 10:54:57
原创
3723人浏览过

word2vector原理

将 word映射到一个新的空间中,并以多维的连续实数向量进行表示叫做“Word Represention” 或 “Word Embedding”。

自从21世纪以来,人们逐渐从原始的词向量稀疏表示法过渡到现在的低维空间中的密集表示。

用稀疏表示法在解决实际问题时经常会遇到维数灾难,并且语义信息无法表示,无法揭示word之间的潜在联系。

而采用低维空间表示法,不但解决了维数灾难问题,并且挖掘了word之间的关联属性,从而提高了向量语义上的准确度。

word2vec 的学习任务

假设有这样一句话:今天 下午 2点钟 搜索 引擎 组 开 组会。

任务1:对于每一个word, 使用该word周围的word 来预测当前word生成的概率。如使用“今天、下午、搜索、引擎、组”来生成“2点钟”。

任务2:对于每一个word,使用该word本身来预测生成其他word的概率。如使用“2点钟”来生成“今天、下午、搜索、引擎、组”中的每个word。

两个任务共同的限制条件是:对于相同的输入,输出每个word的概率之和为1。

Word2vec的模型就是想通过机器学习的方法来达到提高上述任务准确率的一种方法。两个任务分别对应两个的模型(CBOW和skim-gram)。如果不做特殊说明,下文均使用CBOW即任务1所对应的模型来进行分析。

Skim-gram模型分析方法相同。

cj-23.jpeg

更多Word 相关技术文章,请访问Word教程栏目进行学习!

以上就是word2vector原理的详细内容,更多请关注php中文网其它相关文章!

WPS零基础入门到精通全套教程!
WPS零基础入门到精通全套教程!

全网最新最细最实用WPS零基础入门到精通全套教程!带你真正掌握WPS办公! 内含Excel基础操作、函数设计、数据透视表等

下载
相关标签:
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
作者最新文章
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号